Cargando…
Deep Eutectic Solvents: Promising Co-solvents to Improve the Extraction Kinetics of CyMe(4)-BTBP
[Image: see text] In this communication, we report on the use of deep eutectic solvents (DESs) for processing nuclear waste, with a view to selectively recovering minor actinides (MA) from highly active raffinate solutions. DESs are an interesting new class of green and eco-sustainable solvents. Her...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906495/ https://www.ncbi.nlm.nih.gov/pubmed/33644525 http://dx.doi.org/10.1021/acsomega.0c05109 |
Sumario: | [Image: see text] In this communication, we report on the use of deep eutectic solvents (DESs) for processing nuclear waste, with a view to selectively recovering minor actinides (MA) from highly active raffinate solutions. DESs are an interesting new class of green and eco-sustainable solvents. Herein, a representative family of DES was tested as a co-solvent for MA/lanthanides partitioning based on Selective ActiNide EXtraction (SANEX)-like hydrometallurgical processes. The reference system exploits the CyMe(4)-BTBP lipophilic extractant for selective MA recovery, but the slow kinetics is the main limitation toward the industrial implementation. A selection of hydrophilic DESs has been proposed as a phase transfer catalyst and tested to improve the process performances. In this work, the radiochemical stability and the extraction behavior of these DESs have been ascertained. Moreover, a preliminary optimization of system composition has been achieved. This study underlines a catalytic effect of DES that can be proficiently exploited to enhance CyMe(4)-BTBP extraction and selectivity. |
---|