Cargando…
Edge universality for non-Hermitian random matrices
We consider large non-Hermitian real or complex random matrices [Formula: see text] with independent, identically distributed centred entries. We prove that their local eigenvalue statistics near the spectral edge, the unit circle, coincide with those of the Ginibre ensemble, i.e. when the matrix el...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906960/ https://www.ncbi.nlm.nih.gov/pubmed/33707804 http://dx.doi.org/10.1007/s00440-020-01003-7 |
_version_ | 1783655394287026176 |
---|---|
author | Cipolloni, Giorgio Erdős, László Schröder, Dominik |
author_facet | Cipolloni, Giorgio Erdős, László Schröder, Dominik |
author_sort | Cipolloni, Giorgio |
collection | PubMed |
description | We consider large non-Hermitian real or complex random matrices [Formula: see text] with independent, identically distributed centred entries. We prove that their local eigenvalue statistics near the spectral edge, the unit circle, coincide with those of the Ginibre ensemble, i.e. when the matrix elements of [Formula: see text] are Gaussian. This result is the non-Hermitian counterpart of the universality of the Tracy–Widom distribution at the spectral edges of the Wigner ensemble. |
format | Online Article Text |
id | pubmed-7906960 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-79069602021-03-09 Edge universality for non-Hermitian random matrices Cipolloni, Giorgio Erdős, László Schröder, Dominik Probab Theory Relat Fields Article We consider large non-Hermitian real or complex random matrices [Formula: see text] with independent, identically distributed centred entries. We prove that their local eigenvalue statistics near the spectral edge, the unit circle, coincide with those of the Ginibre ensemble, i.e. when the matrix elements of [Formula: see text] are Gaussian. This result is the non-Hermitian counterpart of the universality of the Tracy–Widom distribution at the spectral edges of the Wigner ensemble. Springer Berlin Heidelberg 2020-09-25 2021 /pmc/articles/PMC7906960/ /pubmed/33707804 http://dx.doi.org/10.1007/s00440-020-01003-7 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Cipolloni, Giorgio Erdős, László Schröder, Dominik Edge universality for non-Hermitian random matrices |
title | Edge universality for non-Hermitian random matrices |
title_full | Edge universality for non-Hermitian random matrices |
title_fullStr | Edge universality for non-Hermitian random matrices |
title_full_unstemmed | Edge universality for non-Hermitian random matrices |
title_short | Edge universality for non-Hermitian random matrices |
title_sort | edge universality for non-hermitian random matrices |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906960/ https://www.ncbi.nlm.nih.gov/pubmed/33707804 http://dx.doi.org/10.1007/s00440-020-01003-7 |
work_keys_str_mv | AT cipollonigiorgio edgeuniversalityfornonhermitianrandommatrices AT erdoslaszlo edgeuniversalityfornonhermitianrandommatrices AT schroderdominik edgeuniversalityfornonhermitianrandommatrices |