Cargando…
Edge universality for non-Hermitian random matrices
We consider large non-Hermitian real or complex random matrices [Formula: see text] with independent, identically distributed centred entries. We prove that their local eigenvalue statistics near the spectral edge, the unit circle, coincide with those of the Ginibre ensemble, i.e. when the matrix el...
Autores principales: | Cipolloni, Giorgio, Erdős, László, Schröder, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906960/ https://www.ncbi.nlm.nih.gov/pubmed/33707804 http://dx.doi.org/10.1007/s00440-020-01003-7 |
Ejemplares similares
-
Cusp Universality for Random Matrices I: Local Law and the Complex Hermitian Case
por: Erdős, László, et al.
Publicado: (2020) -
On the Spectral Form Factor for Random Matrices
por: Cipolloni, Giorgio, et al.
Publicado: (2023) -
The Double Dyson Index β Effect in Non-Hermitian Tridiagonal Matrices
por: Goulart, Cleverson A., et al.
Publicado: (2023) -
Hermitian and Unitary Almost-Companion Matrices of Polynomials on Demand
por: Markovich, Liubov A., et al.
Publicado: (2023) -
Some inequalities for generalized eigenvalues of perturbation problems on Hermitian matrices
por: Hong, Yan, et al.
Publicado: (2018)