Cargando…
A hybrid deep neural network for classification of schizophrenia using EEG Data
Schizophrenia is a serious mental illness that causes great harm to patients, so timely and accurate detection is essential. This study aimed to identify a better feature to represent electroencephalography (EEG) signals and improve the classification accuracy of patients with schizophrenia and heal...
Autores principales: | Sun, Jie, Cao, Rui, Zhou, Mengni, Hussain, Waqar, Wang, Bin, Xue, Jiayue, Xiang, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7907145/ https://www.ncbi.nlm.nih.gov/pubmed/33633134 http://dx.doi.org/10.1038/s41598-021-83350-6 |
Ejemplares similares
-
Subject-independent EEG classification based on a hybrid neural network
por: Zhang, Hao, et al.
Publicado: (2023) -
Data Augmentation for Deep Neural Networks Model in EEG Classification Task: A Review
por: He, Chao, et al.
Publicado: (2021) -
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
por: Gao, Yunyuan, et al.
Publicado: (2020) -
Sparse deep neural networks on imaging genetics for schizophrenia case–control classification
por: Chen, Jiayu, et al.
Publicado: (2021)