Cargando…

The Connectivity Fingerprints of Highly-Skilled and Disordered Reading Persist Across Cognitive Domains

The capacity to produce and understand written language is a uniquely human skill that exists on a continuum, and foundational to other facets of human cognition. Multivariate classifiers based on support vector machines (SVM) have provided much insight into the networks underlying reading skill bey...

Descripción completa

Detalles Bibliográficos
Autor principal: McNorgan, Chris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7907163/
https://www.ncbi.nlm.nih.gov/pubmed/33643016
http://dx.doi.org/10.3389/fncom.2021.590093
Descripción
Sumario:The capacity to produce and understand written language is a uniquely human skill that exists on a continuum, and foundational to other facets of human cognition. Multivariate classifiers based on support vector machines (SVM) have provided much insight into the networks underlying reading skill beyond what traditional univariate methods can tell us. Shallow models like SVM require large amounts of data, and this problem is compounded when functional connections, which increase exponentially with network size, are predictors of interest. Data reduction using independent component analyses (ICA) mitigates this problem, but conventionally assumes linear relationships. Multilayer feedforward networks, in contrast, readily find optimal low-dimensional encodings of complex patterns that include complex nonlinear or conditional relationships. Samples of poor and highly-skilled young readers were selected from two open access data sets using rhyming and mental multiplication tasks, respectively. Functional connectivity was computed for the rhyming task within a functionally-defined reading network and used to train multilayer feedforward classifier models to simultaneously associate functional connectivity patterns with lexicality (word vs. pseudoword) and reading skill (poor vs. highly-skilled). Classifiers identified validation set lexicality with significantly better than chance accuracy, and reading skill with near-ceiling accuracy. Critically, a series of replications used pre-trained rhyming-task models to classify reading skill from mental multiplication task participants' connectivity with near-ceiling accuracy. The novel deep learning approach presented here provides the clearest demonstration to date that reading-skill dependent functional connectivity within the reading network influences brain processing dynamics across cognitive domains.