Cargando…
COVID-19 in Iran: Forecasting Pandemic Using Deep Learning
COVID-19 has led to a pandemic, affecting almost all countries in a few months. In this work, we applied selected deep learning models including multilayer perceptron, random forest, and different versions of long short-term memory (LSTM), using three data sources to train the models, including COVI...
Autores principales: | Kafieh, Rahele, Arian, Roya, Saeedizadeh, Narges, Amini, Zahra, Serej, Nasim Dadashi, Minaee, Shervin, Yadav, Sunil Kumar, Vaezi, Atefeh, Rezaei, Nima, Haghjooy Javanmard, Shaghayegh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7907749/ https://www.ncbi.nlm.nih.gov/pubmed/33680071 http://dx.doi.org/10.1155/2021/6927985 |
Ejemplares similares
-
Isfahan and Covid-19: Deep spatiotemporal representation
por: Kafieh, Rahele, et al.
Publicado: (2020) -
COVID TV-Unet: Segmenting COVID-19 chest CT images using connectivity imposed Unet
por: Saeedizadeh, Narges, et al.
Publicado: (2021) -
Statistical Inference of COVID-19 Outbreak: Delay Distribution Effect in EQIR Modeling of Epidemic
por: Tajmirriahi, Mahnoosh, et al.
Publicado: (2022) -
Infodemic and Risk Communication in the Era of CoV-19
por: Vaezi, Atefeh, et al.
Publicado: (2020) -
Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning
por: Minaee, Shervin, et al.
Publicado: (2020)