Cargando…
A Machine Learning Approach to Predict Deep Venous Thrombosis Among Hospitalized Patients
Deep venous thrombosis (DVT) is associated with significant morbidity, mortality, and increased healthcare costs. Standard scoring systems for DVT risk stratification often provide insufficient stratification of hospitalized patients and are unable to accurately predict which inpatients are most lik...
Autores principales: | Ryan, Logan, Mataraso, Samson, Siefkas, Anna, Pellegrini, Emily, Barnes, Gina, Green-Saxena, Abigail, Hoffman, Jana, Calvert, Jacob, Das, Ritankar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7907939/ https://www.ncbi.nlm.nih.gov/pubmed/33625875 http://dx.doi.org/10.1177/1076029621991185 |
Ejemplares similares
-
A Racially Unbiased, Machine Learning Approach to Prediction of Mortality: Algorithm Development Study
por: Allen, Angier, et al.
Publicado: (2020) -
Personalized stratification of hospitalization risk amidst COVID-19: A machine learning approach
por: Lam, Carson, et al.
Publicado: (2021) -
Prediction of respiratory decompensation in Covid-19 patients using machine learning: The READY trial
por: Burdick, Hoyt, et al.
Publicado: (2020) -
Is Machine Learning a Better Way to Identify COVID-19 Patients Who Might Benefit from Hydroxychloroquine Treatment?—The IDENTIFY Trial
por: Burdick, Hoyt, et al.
Publicado: (2020) -
Predicting pulmonary embolism among hospitalized patients with machine learning algorithms
por: Ryan, Logan, et al.
Publicado: (2022)