Cargando…
Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis
To minimize the damage from contaminant accidents in rivers, early identification of the contaminant source is crucial. Thus, in this study, a framework combining Machine Learning (ML) and the Transient Storage zone Model (TSM) was developed to predict the spill location and mass of a contaminant so...
Autores principales: | Kwon, Siyoon, Noh, Hyoseob, Seo, Il Won, Jung, Sung Hyun, Baek, Donghae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908193/ https://www.ncbi.nlm.nih.gov/pubmed/33498931 http://dx.doi.org/10.3390/ijerph18031023 |
Ejemplares similares
-
Seasonally varying effects of environmental factors on phytoplankton abundance in the regulated rivers
por: Kim, Jun Song, et al.
Publicado: (2019) -
A Data-Based Framework for Identifying a Source Location of a Contaminant Spill in a River System with Random Measurement Errors
por: Kim, Jun Hyeong, et al.
Publicado: (2019) -
Crisis and Emergency Risk Communication: Lessons from the Elk River Spill
por: Manuel, John
Publicado: (2014) -
Editorial: Recent Breakthrough in Gluten Contamination
por: Verma, Anil K., et al.
Publicado: (2021) -
Succession Patterns of Microbial Composition and Activity following the Diesel Spill in an Urban River
por: Yang, Ruiyu, et al.
Publicado: (2023)