Cargando…
A GIS-Based Artificial Neural Network Model for Flood Susceptibility Assessment
This article presents a geographic information system (GIS)-based artificial neural network (GANN) model for flood susceptibility assessment of Keelung City, Taiwan. Various factors, including elevation, slope angle, slope aspect, flow accumulation, flow direction, topographic wetness index (TWI), d...
Autores principales: | Khoirunisa, Nanda, Ku, Cheng-Yu, Liu, Chih-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908221/ https://www.ncbi.nlm.nih.gov/pubmed/33530348 http://dx.doi.org/10.3390/ijerph18031072 |
Ejemplares similares
-
Modeling of land subsidence using GIS-based artificial neural network in Yunlin County, Taiwan
por: Ku, Cheng-Yu, et al.
Publicado: (2023) -
Artificial neural network for flood susceptibility mapping in Bangladesh
por: Rudra, Rhyme Rubayet, et al.
Publicado: (2023) -
Exploratory regression modeling for flood susceptibility mapping in the GIS environment
por: Fenglin, Wang, et al.
Publicado: (2023) -
Application of TOPSIS method for flood susceptibility mapping using Excel and GIS
por: Mitra, Rajib, et al.
Publicado: (2023) -
GIS-based risk assessment of flood disaster in the Lijiang River Basin
por: Ziwei, Li, et al.
Publicado: (2023)