Cargando…

Phenological Response in the Trophic Levels to Climate Change in Korea

The response of the phenological events of individual species to climate change is not isolated, but is connected through interaction with other species at the same or adjacent trophic level. Using long-term phenological data observed since 1976 in Korea, whose temperature has risen more steeply tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Minkyung, Lee, Sojeong, Lee, Hakyung, Lee, Sangdon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908274/
https://www.ncbi.nlm.nih.gov/pubmed/33530515
http://dx.doi.org/10.3390/ijerph18031086
_version_ 1783655675114553344
author Kim, Minkyung
Lee, Sojeong
Lee, Hakyung
Lee, Sangdon
author_facet Kim, Minkyung
Lee, Sojeong
Lee, Hakyung
Lee, Sangdon
author_sort Kim, Minkyung
collection PubMed
description The response of the phenological events of individual species to climate change is not isolated, but is connected through interaction with other species at the same or adjacent trophic level. Using long-term phenological data observed since 1976 in Korea, whose temperature has risen more steeply than the average global temperature, this study conducted phenological analysis (differ-ences in the phenology of groups, differences in phenological shifts due to climate change, differ-ences in phenological sensitivity to climate by groups, and the change of phenological day differ-ences among interacting groups). The phenological shift of the producer group (plants) was found to be negative in all researched species, which means that it blooms quickly over the years. The regression slope of consumers (primary consumers and secondary consumers) was generally posi-tive which means that the phenological events of these species tended to be later during the study period. The inter-regional deviation of phenological events was not large for any plant except for plum tree and Black locust. In addition, regional variations in high trophic levels of secondary consumers tended to be greater than that of producers and primary consumers. Among the studied species, plum was the most sensitive to temperature, and when the temperature rose by 1 °C, the flowering time of plum decreased by 7.20 days. As a result of checking the day differences in the phenological events of the interacting species, the phenological events of species were reversed, and butterflies have appeared earlier than plum, Korean forsythia, and Korean rosebay since 1990. Using long-term data from Korea, this study investigated differences in phenological reactions among trophic groups. There is a possibility of a phenological mismatch between trophic groups in the future if global warming continues due to differences in sensitivity to climate and phenological shifts between trophic levels.
format Online
Article
Text
id pubmed-7908274
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79082742021-02-27 Phenological Response in the Trophic Levels to Climate Change in Korea Kim, Minkyung Lee, Sojeong Lee, Hakyung Lee, Sangdon Int J Environ Res Public Health Article The response of the phenological events of individual species to climate change is not isolated, but is connected through interaction with other species at the same or adjacent trophic level. Using long-term phenological data observed since 1976 in Korea, whose temperature has risen more steeply than the average global temperature, this study conducted phenological analysis (differ-ences in the phenology of groups, differences in phenological shifts due to climate change, differ-ences in phenological sensitivity to climate by groups, and the change of phenological day differ-ences among interacting groups). The phenological shift of the producer group (plants) was found to be negative in all researched species, which means that it blooms quickly over the years. The regression slope of consumers (primary consumers and secondary consumers) was generally posi-tive which means that the phenological events of these species tended to be later during the study period. The inter-regional deviation of phenological events was not large for any plant except for plum tree and Black locust. In addition, regional variations in high trophic levels of secondary consumers tended to be greater than that of producers and primary consumers. Among the studied species, plum was the most sensitive to temperature, and when the temperature rose by 1 °C, the flowering time of plum decreased by 7.20 days. As a result of checking the day differences in the phenological events of the interacting species, the phenological events of species were reversed, and butterflies have appeared earlier than plum, Korean forsythia, and Korean rosebay since 1990. Using long-term data from Korea, this study investigated differences in phenological reactions among trophic groups. There is a possibility of a phenological mismatch between trophic groups in the future if global warming continues due to differences in sensitivity to climate and phenological shifts between trophic levels. MDPI 2021-01-26 2021-02 /pmc/articles/PMC7908274/ /pubmed/33530515 http://dx.doi.org/10.3390/ijerph18031086 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kim, Minkyung
Lee, Sojeong
Lee, Hakyung
Lee, Sangdon
Phenological Response in the Trophic Levels to Climate Change in Korea
title Phenological Response in the Trophic Levels to Climate Change in Korea
title_full Phenological Response in the Trophic Levels to Climate Change in Korea
title_fullStr Phenological Response in the Trophic Levels to Climate Change in Korea
title_full_unstemmed Phenological Response in the Trophic Levels to Climate Change in Korea
title_short Phenological Response in the Trophic Levels to Climate Change in Korea
title_sort phenological response in the trophic levels to climate change in korea
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908274/
https://www.ncbi.nlm.nih.gov/pubmed/33530515
http://dx.doi.org/10.3390/ijerph18031086
work_keys_str_mv AT kimminkyung phenologicalresponseinthetrophiclevelstoclimatechangeinkorea
AT leesojeong phenologicalresponseinthetrophiclevelstoclimatechangeinkorea
AT leehakyung phenologicalresponseinthetrophiclevelstoclimatechangeinkorea
AT leesangdon phenologicalresponseinthetrophiclevelstoclimatechangeinkorea