Cargando…
Sparse data embedding and prediction by tropical matrix factorization
BACKGROUND: Matrix factorization methods are linear models, with limited capability to model complex relations. In our work, we use tropical semiring to introduce non-linearity into matrix factorization models. We propose a method called Sparse Tropical Matrix Factorization (STMF) for the estimation...
Autores principales: | Omanović, Amra, Kazan, Hilal, Oblak, Polona, Curk, Tomaž |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908717/ https://www.ncbi.nlm.nih.gov/pubmed/33632116 http://dx.doi.org/10.1186/s12859-021-04023-9 |
Ejemplares similares
-
Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins
por: Stražar, Martin, et al.
Publicado: (2016) -
SECOND: Sparsely Embedded Convolutional Detection
por: Yan, Yan, et al.
Publicado: (2018) -
Prediction of problematic complexes from PPI networks: sparse, embedded, and small complexes
por: Yong, Chern Han, et al.
Publicado: (2015) -
Sparse matrix technology
por: Pissanetzky, Sergio
Publicado: (1984) -
Removing Compliance: Interpersonal and Social Factors Affecting Insight Assessments
por: Curk, Polona, et al.
Publicado: (2020)