Cargando…
The value of the hedgehog signal in osteoblasts in fluoride-induced bone-tissue injury
OBJECTIVE: This study was designed to observe the expression of important hedgehog (Hh) signal factors in the bone tissue of rats with chronic fluorosis and cultured osteoblasts in order to investigate the role and significance of the Hh signal in fluoride-induced bone injury. METHODS: Healthy Sprag...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908799/ https://www.ncbi.nlm.nih.gov/pubmed/33637095 http://dx.doi.org/10.1186/s13018-021-02287-8 |
_version_ | 1783655792977641472 |
---|---|
author | Deng, Chaonan Xu, Lin Zhang, Ying Zhao, Lina Linghu, Yan Yu, Yanni |
author_facet | Deng, Chaonan Xu, Lin Zhang, Ying Zhao, Lina Linghu, Yan Yu, Yanni |
author_sort | Deng, Chaonan |
collection | PubMed |
description | OBJECTIVE: This study was designed to observe the expression of important hedgehog (Hh) signal factors in the bone tissue of rats with chronic fluorosis and cultured osteoblasts in order to investigate the role and significance of the Hh signal in fluoride-induced bone injury. METHODS: Healthy Sprague-Dawley (SD) rats were randomly divided into four groups: the control group, the fluorosis group (F Group), the fluoride + blocker group (F + Cycl group: rats were treated with fluoride + cyclopamine), and the fluoride + blocker control group (F + DMSO group). After 6 months of intervention, the urinary fluoride content of rats in each group was detected. The primary osteoblasts of rats were selected for cell experiment, and the experiment was carried out after the cells were passaged from the second to the fourth generation. RESULTS: The proliferation rate of primary rat osteoblasts presented time-affected and dose-affected relationships in a short time under treatment with a low dose of sodium fluoride (NaF), but the proliferation of osteoblasts was inhibited by long-term and high-dose NaF exposure. In the F group, the alkaline phosphatase (ALP) activity of osteoblasts increased gradually. The ALP activity was lower in the F + Cycl group than in the F group, and there was no significant difference between the F + DMSO group and F group. With the increase in fluoride exposure, the expression of Hh signal factors and osteogenic-related factor proteins increased gradually. The expressions of Indian hedgehog (Ihh), smoothened (Smo), Glioma-associated oncogene homolog (Gli) 2, and Runt-related transcription factor 2 (Runx2)in the F + Cycl group increased with the dose of fluoride but they were significantly inhibited compared with the F group. Compared with the control group, the content of urinary fluoride in the F group was significantly higher (P < 0.05), but there was no significant change in urinary fluoride content in the F + Cycl group and the F + DMSO group. Compared with the control group, the serum bone alkaline phosphatase (BALP) contents of rats in the other groups increased after 6 months’ intake of fluoride water (P < 0.05). After drug blocking, the serum BALP content in the F + Cycl group was lower than that in the F + DMSO group (P < 0.05). The BALP content in the F + DMSO group was similar to that in the F group: it did not decrease. The mRNA expressions of Ihh, Smo, Gli2, and Runx2 in bone tissue of the F group were significantly higher than those in the control group (P < 0.05). After cyclopamine blocking, the expressions decreased (P < 0.05), but the differences between the F + DMSO group and F group were not statistically significant. CONCLUSION: Hh signal plays an important role in fluoride-induced bone injury. The effective inhibition of cyclopamine is expected to be a new target for the treatment of skeletal damage caused by fluorosis. |
format | Online Article Text |
id | pubmed-7908799 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-79087992021-02-26 The value of the hedgehog signal in osteoblasts in fluoride-induced bone-tissue injury Deng, Chaonan Xu, Lin Zhang, Ying Zhao, Lina Linghu, Yan Yu, Yanni J Orthop Surg Res Research Article OBJECTIVE: This study was designed to observe the expression of important hedgehog (Hh) signal factors in the bone tissue of rats with chronic fluorosis and cultured osteoblasts in order to investigate the role and significance of the Hh signal in fluoride-induced bone injury. METHODS: Healthy Sprague-Dawley (SD) rats were randomly divided into four groups: the control group, the fluorosis group (F Group), the fluoride + blocker group (F + Cycl group: rats were treated with fluoride + cyclopamine), and the fluoride + blocker control group (F + DMSO group). After 6 months of intervention, the urinary fluoride content of rats in each group was detected. The primary osteoblasts of rats were selected for cell experiment, and the experiment was carried out after the cells were passaged from the second to the fourth generation. RESULTS: The proliferation rate of primary rat osteoblasts presented time-affected and dose-affected relationships in a short time under treatment with a low dose of sodium fluoride (NaF), but the proliferation of osteoblasts was inhibited by long-term and high-dose NaF exposure. In the F group, the alkaline phosphatase (ALP) activity of osteoblasts increased gradually. The ALP activity was lower in the F + Cycl group than in the F group, and there was no significant difference between the F + DMSO group and F group. With the increase in fluoride exposure, the expression of Hh signal factors and osteogenic-related factor proteins increased gradually. The expressions of Indian hedgehog (Ihh), smoothened (Smo), Glioma-associated oncogene homolog (Gli) 2, and Runt-related transcription factor 2 (Runx2)in the F + Cycl group increased with the dose of fluoride but they were significantly inhibited compared with the F group. Compared with the control group, the content of urinary fluoride in the F group was significantly higher (P < 0.05), but there was no significant change in urinary fluoride content in the F + Cycl group and the F + DMSO group. Compared with the control group, the serum bone alkaline phosphatase (BALP) contents of rats in the other groups increased after 6 months’ intake of fluoride water (P < 0.05). After drug blocking, the serum BALP content in the F + Cycl group was lower than that in the F + DMSO group (P < 0.05). The BALP content in the F + DMSO group was similar to that in the F group: it did not decrease. The mRNA expressions of Ihh, Smo, Gli2, and Runx2 in bone tissue of the F group were significantly higher than those in the control group (P < 0.05). After cyclopamine blocking, the expressions decreased (P < 0.05), but the differences between the F + DMSO group and F group were not statistically significant. CONCLUSION: Hh signal plays an important role in fluoride-induced bone injury. The effective inhibition of cyclopamine is expected to be a new target for the treatment of skeletal damage caused by fluorosis. BioMed Central 2021-02-26 /pmc/articles/PMC7908799/ /pubmed/33637095 http://dx.doi.org/10.1186/s13018-021-02287-8 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Deng, Chaonan Xu, Lin Zhang, Ying Zhao, Lina Linghu, Yan Yu, Yanni The value of the hedgehog signal in osteoblasts in fluoride-induced bone-tissue injury |
title | The value of the hedgehog signal in osteoblasts in fluoride-induced bone-tissue injury |
title_full | The value of the hedgehog signal in osteoblasts in fluoride-induced bone-tissue injury |
title_fullStr | The value of the hedgehog signal in osteoblasts in fluoride-induced bone-tissue injury |
title_full_unstemmed | The value of the hedgehog signal in osteoblasts in fluoride-induced bone-tissue injury |
title_short | The value of the hedgehog signal in osteoblasts in fluoride-induced bone-tissue injury |
title_sort | value of the hedgehog signal in osteoblasts in fluoride-induced bone-tissue injury |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908799/ https://www.ncbi.nlm.nih.gov/pubmed/33637095 http://dx.doi.org/10.1186/s13018-021-02287-8 |
work_keys_str_mv | AT dengchaonan thevalueofthehedgehogsignalinosteoblastsinfluorideinducedbonetissueinjury AT xulin thevalueofthehedgehogsignalinosteoblastsinfluorideinducedbonetissueinjury AT zhangying thevalueofthehedgehogsignalinosteoblastsinfluorideinducedbonetissueinjury AT zhaolina thevalueofthehedgehogsignalinosteoblastsinfluorideinducedbonetissueinjury AT linghuyan thevalueofthehedgehogsignalinosteoblastsinfluorideinducedbonetissueinjury AT yuyanni thevalueofthehedgehogsignalinosteoblastsinfluorideinducedbonetissueinjury AT dengchaonan valueofthehedgehogsignalinosteoblastsinfluorideinducedbonetissueinjury AT xulin valueofthehedgehogsignalinosteoblastsinfluorideinducedbonetissueinjury AT zhangying valueofthehedgehogsignalinosteoblastsinfluorideinducedbonetissueinjury AT zhaolina valueofthehedgehogsignalinosteoblastsinfluorideinducedbonetissueinjury AT linghuyan valueofthehedgehogsignalinosteoblastsinfluorideinducedbonetissueinjury AT yuyanni valueofthehedgehogsignalinosteoblastsinfluorideinducedbonetissueinjury |