Cargando…

Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) Peel Using Pressurized Liquid Extraction

Pressurized liquid extraction (PLE) is a clean and environmentally friendly alternative for the recovery of bioactive compounds from fruit by-products. Herein we focused on PLE for the extraction of bioactive compounds from pomegranate peel using a combination of pressurized water and ethanol. The m...

Descripción completa

Detalles Bibliográficos
Autores principales: García, Paula, Fredes, Carolina, Cea, Inés, Lozano-Sánchez, Jesús, Leyva-Jiménez, Francisco Javier, Robert, Paz, Vergara, Cristina, Jimenez, Paula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909278/
https://www.ncbi.nlm.nih.gov/pubmed/33498325
http://dx.doi.org/10.3390/foods10020203
Descripción
Sumario:Pressurized liquid extraction (PLE) is a clean and environmentally friendly alternative for the recovery of bioactive compounds from fruit by-products. Herein we focused on PLE for the extraction of bioactive compounds from pomegranate peel using a combination of pressurized water and ethanol. The main aim was to determine the optimal PLE conditions, i.e., ethanol percentage and process temperature, to obtain a pomegranate peel extract (PPE) with maximum total phenolic content (TPC), punicalagin content, and antimicrobial activity (AMA). The experimental design was conducted using a central composite design with axial points. Response surface methodology was applied to optimize the response variables using the desirability function. Multiple response optimization indicated a process temperature of 200 °C and ethanol of 77% as optimal conditions. The TPC and the punicalagin content of PPE-PLE obtained under optimal conditions were 164.3 ± 10.7 mg GAE/g DW and 17 ± 3.6 mg/g DW, respectively. Our findings support the efficacy of PLE on TPC recovery but not in punicalagin recovery. The AMA against S. aureus was 14 mm. The efficacy of PPE-PLE in food applications must continue to be studied in order to achieve adequate information on its potential for developing new food additives.