Cargando…

Bacillus thuringiensis Cells Selectively Captured by Phages and Identified by Surface Enhanced Raman Spectroscopy Technique

In this work, the results on the detection and identification of Bacillus thuringiensis (Bt) cells by using surface-enhanced Raman spectroscopy (SERS) are presented. Bt has been chosen as a harmless surrogate of the pathogen Bacillus anthracis (Ba) responsible for the deadly Anthrax disease, because...

Descripción completa

Detalles Bibliográficos
Autores principales: Almaviva, Salvatore, Palucci, Antonio, Aruffo, Eleonora, Rufoloni, Alessandro, Lai, Antonia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909556/
https://www.ncbi.nlm.nih.gov/pubmed/33498471
http://dx.doi.org/10.3390/mi12020100
_version_ 1783655955605487616
author Almaviva, Salvatore
Palucci, Antonio
Aruffo, Eleonora
Rufoloni, Alessandro
Lai, Antonia
author_facet Almaviva, Salvatore
Palucci, Antonio
Aruffo, Eleonora
Rufoloni, Alessandro
Lai, Antonia
author_sort Almaviva, Salvatore
collection PubMed
description In this work, the results on the detection and identification of Bacillus thuringiensis (Bt) cells by using surface-enhanced Raman spectroscopy (SERS) are presented. Bt has been chosen as a harmless surrogate of the pathogen Bacillus anthracis (Ba) responsible for the deadly Anthrax disease, because of their genetic similarities. Drops of 200 μL of Bt suspensions, with concentrations 10(2) CFU/mL, 10(4) CFU/mL, 10(6) CFU/mL, were deposited on a SERS chip and sampled after water evaporation. To minimize the contribution to the SERS data given by naturally occurring interferents present in a real scenario, the SERS chip was functionalized with specific phage receptors BtCS33, that bind Bt (or Ba) cells to the SERS surface and allow to rinse the chip removing unwanted contaminants. Different chemometric approaches were applied to the SERS data to classify spectra from Bt-contaminated and uncontaminated areas of the chip: Principal Component Regression (PCR), Partial Least Squares Regression (PLSR) and Data Driven Soft Independent Modeling of Class Analogy (DD-SIMCA). The first two was tested and trained by using data from both contaminated and un-contaminated chips, the last was trained by using data from un-contaminated chips only and tested with all the available data. All of them were able to correctly classify the SERS spectra with great accuracy, the last being suitable for an automated recognition procedure.
format Online
Article
Text
id pubmed-7909556
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79095562021-02-27 Bacillus thuringiensis Cells Selectively Captured by Phages and Identified by Surface Enhanced Raman Spectroscopy Technique Almaviva, Salvatore Palucci, Antonio Aruffo, Eleonora Rufoloni, Alessandro Lai, Antonia Micromachines (Basel) Article In this work, the results on the detection and identification of Bacillus thuringiensis (Bt) cells by using surface-enhanced Raman spectroscopy (SERS) are presented. Bt has been chosen as a harmless surrogate of the pathogen Bacillus anthracis (Ba) responsible for the deadly Anthrax disease, because of their genetic similarities. Drops of 200 μL of Bt suspensions, with concentrations 10(2) CFU/mL, 10(4) CFU/mL, 10(6) CFU/mL, were deposited on a SERS chip and sampled after water evaporation. To minimize the contribution to the SERS data given by naturally occurring interferents present in a real scenario, the SERS chip was functionalized with specific phage receptors BtCS33, that bind Bt (or Ba) cells to the SERS surface and allow to rinse the chip removing unwanted contaminants. Different chemometric approaches were applied to the SERS data to classify spectra from Bt-contaminated and uncontaminated areas of the chip: Principal Component Regression (PCR), Partial Least Squares Regression (PLSR) and Data Driven Soft Independent Modeling of Class Analogy (DD-SIMCA). The first two was tested and trained by using data from both contaminated and un-contaminated chips, the last was trained by using data from un-contaminated chips only and tested with all the available data. All of them were able to correctly classify the SERS spectra with great accuracy, the last being suitable for an automated recognition procedure. MDPI 2021-01-20 /pmc/articles/PMC7909556/ /pubmed/33498471 http://dx.doi.org/10.3390/mi12020100 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Almaviva, Salvatore
Palucci, Antonio
Aruffo, Eleonora
Rufoloni, Alessandro
Lai, Antonia
Bacillus thuringiensis Cells Selectively Captured by Phages and Identified by Surface Enhanced Raman Spectroscopy Technique
title Bacillus thuringiensis Cells Selectively Captured by Phages and Identified by Surface Enhanced Raman Spectroscopy Technique
title_full Bacillus thuringiensis Cells Selectively Captured by Phages and Identified by Surface Enhanced Raman Spectroscopy Technique
title_fullStr Bacillus thuringiensis Cells Selectively Captured by Phages and Identified by Surface Enhanced Raman Spectroscopy Technique
title_full_unstemmed Bacillus thuringiensis Cells Selectively Captured by Phages and Identified by Surface Enhanced Raman Spectroscopy Technique
title_short Bacillus thuringiensis Cells Selectively Captured by Phages and Identified by Surface Enhanced Raman Spectroscopy Technique
title_sort bacillus thuringiensis cells selectively captured by phages and identified by surface enhanced raman spectroscopy technique
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909556/
https://www.ncbi.nlm.nih.gov/pubmed/33498471
http://dx.doi.org/10.3390/mi12020100
work_keys_str_mv AT almavivasalvatore bacillusthuringiensiscellsselectivelycapturedbyphagesandidentifiedbysurfaceenhancedramanspectroscopytechnique
AT palucciantonio bacillusthuringiensiscellsselectivelycapturedbyphagesandidentifiedbysurfaceenhancedramanspectroscopytechnique
AT aruffoeleonora bacillusthuringiensiscellsselectivelycapturedbyphagesandidentifiedbysurfaceenhancedramanspectroscopytechnique
AT rufolonialessandro bacillusthuringiensiscellsselectivelycapturedbyphagesandidentifiedbysurfaceenhancedramanspectroscopytechnique
AT laiantonia bacillusthuringiensiscellsselectivelycapturedbyphagesandidentifiedbysurfaceenhancedramanspectroscopytechnique