Cargando…
Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc
In recent years, due to the development of industrial and agricultural production, heavy metal contamination has attracted increasing attention. Aromatic and medicinal plant Salvia sclarea L. (clary sage) is classified to zinc (Zn) accumulators and considered as a potential plant for the phytoremedi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909794/ https://www.ncbi.nlm.nih.gov/pubmed/33494177 http://dx.doi.org/10.3390/plants10020194 |
_version_ | 1783655998965153792 |
---|---|
author | Dobrikova, Anelia Apostolova, Emilia Hanć, Anetta Yotsova, Ekaterina Borisova, Preslava Sperdouli, Ilektra Adamakis, Ioannis-Dimosthenis S. Moustakas, Michael |
author_facet | Dobrikova, Anelia Apostolova, Emilia Hanć, Anetta Yotsova, Ekaterina Borisova, Preslava Sperdouli, Ilektra Adamakis, Ioannis-Dimosthenis S. Moustakas, Michael |
author_sort | Dobrikova, Anelia |
collection | PubMed |
description | In recent years, due to the development of industrial and agricultural production, heavy metal contamination has attracted increasing attention. Aromatic and medicinal plant Salvia sclarea L. (clary sage) is classified to zinc (Zn) accumulators and considered as a potential plant for the phytoremediation of heavy metal polluted soils. In this study, an adaptation of clary sage to 900 µM (excess) Zn exposure for eight days in a hydroponic culture was investigated. The tolerance mechanisms under excess Zn exposure were assessed by evaluating changes in the nutrient uptake, leaf pigment and phenolic content, photosynthetic activity and leaf structural characteristics. The uptake and the distribution of Zn, as well as some essential elements such as: Ca, Mg, Fe, Mn and Cu, were examined by inductively coupled plasma mass spectrometry. The results revealed that Salvia sclarea is a Zn-accumulator plant that tolerates significantly high toxic levels of Zn in the leaves by increasing the leaf contents of Fe, Ca and Mn ions to protect the photosynthetic function and to stimulate the photosystem I (PSI) and photosystem II (PSII) activities. The exposure of clary sage to excess Zn significantly increased the synthesis of total phenolics and anthocyanins in the leaves; these play an important role in Zn detoxification and protection against oxidative stress. The lipid peroxidation and electrolyte leakage in leaves, used as clear indicators for heavy metal damage, were slightly increased. All these data highlight that Salvia sclarea is an economically interesting plant for the phytoextraction and/or phytostabilization of Zn-contaminated soils. |
format | Online Article Text |
id | pubmed-7909794 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79097942021-02-27 Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc Dobrikova, Anelia Apostolova, Emilia Hanć, Anetta Yotsova, Ekaterina Borisova, Preslava Sperdouli, Ilektra Adamakis, Ioannis-Dimosthenis S. Moustakas, Michael Plants (Basel) Article In recent years, due to the development of industrial and agricultural production, heavy metal contamination has attracted increasing attention. Aromatic and medicinal plant Salvia sclarea L. (clary sage) is classified to zinc (Zn) accumulators and considered as a potential plant for the phytoremediation of heavy metal polluted soils. In this study, an adaptation of clary sage to 900 µM (excess) Zn exposure for eight days in a hydroponic culture was investigated. The tolerance mechanisms under excess Zn exposure were assessed by evaluating changes in the nutrient uptake, leaf pigment and phenolic content, photosynthetic activity and leaf structural characteristics. The uptake and the distribution of Zn, as well as some essential elements such as: Ca, Mg, Fe, Mn and Cu, were examined by inductively coupled plasma mass spectrometry. The results revealed that Salvia sclarea is a Zn-accumulator plant that tolerates significantly high toxic levels of Zn in the leaves by increasing the leaf contents of Fe, Ca and Mn ions to protect the photosynthetic function and to stimulate the photosystem I (PSI) and photosystem II (PSII) activities. The exposure of clary sage to excess Zn significantly increased the synthesis of total phenolics and anthocyanins in the leaves; these play an important role in Zn detoxification and protection against oxidative stress. The lipid peroxidation and electrolyte leakage in leaves, used as clear indicators for heavy metal damage, were slightly increased. All these data highlight that Salvia sclarea is an economically interesting plant for the phytoextraction and/or phytostabilization of Zn-contaminated soils. MDPI 2021-01-21 /pmc/articles/PMC7909794/ /pubmed/33494177 http://dx.doi.org/10.3390/plants10020194 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dobrikova, Anelia Apostolova, Emilia Hanć, Anetta Yotsova, Ekaterina Borisova, Preslava Sperdouli, Ilektra Adamakis, Ioannis-Dimosthenis S. Moustakas, Michael Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc |
title | Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc |
title_full | Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc |
title_fullStr | Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc |
title_full_unstemmed | Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc |
title_short | Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc |
title_sort | tolerance mechanisms of the aromatic and medicinal plant salvia sclarea l. to excess zinc |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909794/ https://www.ncbi.nlm.nih.gov/pubmed/33494177 http://dx.doi.org/10.3390/plants10020194 |
work_keys_str_mv | AT dobrikovaanelia tolerancemechanismsofthearomaticandmedicinalplantsalviasclarealtoexcesszinc AT apostolovaemilia tolerancemechanismsofthearomaticandmedicinalplantsalviasclarealtoexcesszinc AT hancanetta tolerancemechanismsofthearomaticandmedicinalplantsalviasclarealtoexcesszinc AT yotsovaekaterina tolerancemechanismsofthearomaticandmedicinalplantsalviasclarealtoexcesszinc AT borisovapreslava tolerancemechanismsofthearomaticandmedicinalplantsalviasclarealtoexcesszinc AT sperdouliilektra tolerancemechanismsofthearomaticandmedicinalplantsalviasclarealtoexcesszinc AT adamakisioannisdimostheniss tolerancemechanismsofthearomaticandmedicinalplantsalviasclarealtoexcesszinc AT moustakasmichael tolerancemechanismsofthearomaticandmedicinalplantsalviasclarealtoexcesszinc |