Cargando…
Automated Lung Segmentation on Chest Computed Tomography Images with Extensive Lung Parenchymal Abnormalities Using a Deep Neural Network
OBJECTIVE: We aimed to develop a deep neural network for segmenting lung parenchyma with extensive pathological conditions on non-contrast chest computed tomography (CT) images. MATERIALS AND METHODS: Thin-section non-contrast chest CT images from 203 patients (115 males, 88 females; age range, 31–8...
Autores principales: | Yoo, Seung-Jin, Yoon, Soon Ho, Lee, Jong Hyuk, Kim, Ki Hwan, Choi, Hyoung In, Park, Sang Joon, Goo, Jin Mo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909864/ https://www.ncbi.nlm.nih.gov/pubmed/33169549 http://dx.doi.org/10.3348/kjr.2020.0318 |
Ejemplares similares
-
Interstitial Lung Abnormalities: What Radiologists Should Know
por: Chae, Kum Ju, et al.
Publicado: (2021) -
Application of Deconvolution Algorithm of Point Spread Function in Improving Image Quality: An Observer Preference Study on Chest Radiography
por: Chae, Kum Ju, et al.
Publicado: (2018) -
Cone-Beam CT-Guided Percutaneous Transthoracic Needle Lung Biopsy of Juxtaphrenic Lesions: Diagnostic Accuracy and Complications
por: Hong, Wonju, et al.
Publicado: (2021) -
Implementation of a Deep Learning-Based Computer-Aided Detection System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19
por: Hwang, Eui Jin, et al.
Publicado: (2020) -
Effects of Implementing Artificial Intelligence-Based Computer-Aided Detection for Chest Radiographs in Daily Practice on the Rate of Referral to Chest Computed Tomography in Pulmonology Outpatient Clinic
por: Hong, Wonju, et al.
Publicado: (2023)