Cargando…
Development of a Malignancy Potential Binary Prediction Model Based on Deep Learning for the Mitotic Count of Local Primary Gastrointestinal Stromal Tumors
OBJECTIVE: The mitotic count of gastrointestinal stromal tumors (GIST) is closely associated with the risk of planting and metastasis. The purpose of this study was to develop a predictive model for the mitotic index of local primary GIST, based on deep learning algorithm. MATERIALS AND METHODS: Abd...
Autores principales: | Yang, Jiejin, Chen, Zeyang, Liu, Weipeng, Wang, Xiangpeng, Ma, Shuai, Jin, Feifei, Wang, Xiaoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909867/ https://www.ncbi.nlm.nih.gov/pubmed/33169545 http://dx.doi.org/10.3348/kjr.2019.0851 |
Ejemplares similares
-
Fluid Retention Associated with Imatinib Treatment in Patients with Gastrointestinal Stromal Tumor: Quantitative Radiologic Assessment and Implications for Management
por: Kim, Kyung Won, et al.
Publicado: (2015) -
Hepatic Lesions that Mimic Metastasis on Radiological Imaging during Chemotherapy for Gastrointestinal Malignancy: Recent Updates
por: You, Sung-Hye, et al.
Publicado: (2017) -
Retroperitoneal gastrointestinal stromal tumor: A case report and literature review
por: Nguyen, Thai Thi My Hanh, et al.
Publicado: (2020) -
Gastrointestinal Involvement of Recurrent Renal Cell Carcinoma: CT Findings and Clinicopathologic Features
por: Park, Hyo Jung, et al.
Publicado: (2017) -
Malignant Glomus Tumor of the Peritoneum: Case Report
por: Baleato-González, Sandra, et al.
Publicado: (2014)