Cargando…

Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor

Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full co...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiang, Xiaogang, Wang, Yizhi, Xue, Shichuan, Ge, Renyou, Chen, Lifeng, Liu, Yingwen, Huang, Anqi, Fu, Xiang, Xu, Ping, Yi, Teng, Xu, Fufang, Deng, Mingtang, Wang, Jingbo B., Meinecke, Jasmin D. A., Matthews, Jonathan C. F., Cai, Xinlun, Yang, Xuejun, Wu, Junjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909884/
https://www.ncbi.nlm.nih.gov/pubmed/33637521
http://dx.doi.org/10.1126/sciadv.abb8375
_version_ 1783656018878660608
author Qiang, Xiaogang
Wang, Yizhi
Xue, Shichuan
Ge, Renyou
Chen, Lifeng
Liu, Yingwen
Huang, Anqi
Fu, Xiang
Xu, Ping
Yi, Teng
Xu, Fufang
Deng, Mingtang
Wang, Jingbo B.
Meinecke, Jasmin D. A.
Matthews, Jonathan C. F.
Cai, Xinlun
Yang, Xuejun
Wu, Junjie
author_facet Qiang, Xiaogang
Wang, Yizhi
Xue, Shichuan
Ge, Renyou
Chen, Lifeng
Liu, Yingwen
Huang, Anqi
Fu, Xiang
Xu, Ping
Yi, Teng
Xu, Fufang
Deng, Mingtang
Wang, Jingbo B.
Meinecke, Jasmin D. A.
Matthews, Jonathan C. F.
Cai, Xinlun
Yang, Xuejun
Wu, Junjie
author_sort Qiang, Xiaogang
collection PubMed
description Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications.
format Online
Article
Text
id pubmed-7909884
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-79098842021-03-10 Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor Qiang, Xiaogang Wang, Yizhi Xue, Shichuan Ge, Renyou Chen, Lifeng Liu, Yingwen Huang, Anqi Fu, Xiang Xu, Ping Yi, Teng Xu, Fufang Deng, Mingtang Wang, Jingbo B. Meinecke, Jasmin D. A. Matthews, Jonathan C. F. Cai, Xinlun Yang, Xuejun Wu, Junjie Sci Adv Research Articles Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications. American Association for the Advancement of Science 2021-02-26 /pmc/articles/PMC7909884/ /pubmed/33637521 http://dx.doi.org/10.1126/sciadv.abb8375 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Qiang, Xiaogang
Wang, Yizhi
Xue, Shichuan
Ge, Renyou
Chen, Lifeng
Liu, Yingwen
Huang, Anqi
Fu, Xiang
Xu, Ping
Yi, Teng
Xu, Fufang
Deng, Mingtang
Wang, Jingbo B.
Meinecke, Jasmin D. A.
Matthews, Jonathan C. F.
Cai, Xinlun
Yang, Xuejun
Wu, Junjie
Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor
title Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor
title_full Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor
title_fullStr Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor
title_full_unstemmed Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor
title_short Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor
title_sort implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909884/
https://www.ncbi.nlm.nih.gov/pubmed/33637521
http://dx.doi.org/10.1126/sciadv.abb8375
work_keys_str_mv AT qiangxiaogang implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT wangyizhi implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT xueshichuan implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT gerenyou implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT chenlifeng implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT liuyingwen implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT huanganqi implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT fuxiang implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT xuping implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT yiteng implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT xufufang implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT dengmingtang implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT wangjingbob implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT meineckejasminda implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT matthewsjonathancf implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT caixinlun implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT yangxuejun implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor
AT wujunjie implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor