Cargando…
Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor
Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full co...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909884/ https://www.ncbi.nlm.nih.gov/pubmed/33637521 http://dx.doi.org/10.1126/sciadv.abb8375 |
_version_ | 1783656018878660608 |
---|---|
author | Qiang, Xiaogang Wang, Yizhi Xue, Shichuan Ge, Renyou Chen, Lifeng Liu, Yingwen Huang, Anqi Fu, Xiang Xu, Ping Yi, Teng Xu, Fufang Deng, Mingtang Wang, Jingbo B. Meinecke, Jasmin D. A. Matthews, Jonathan C. F. Cai, Xinlun Yang, Xuejun Wu, Junjie |
author_facet | Qiang, Xiaogang Wang, Yizhi Xue, Shichuan Ge, Renyou Chen, Lifeng Liu, Yingwen Huang, Anqi Fu, Xiang Xu, Ping Yi, Teng Xu, Fufang Deng, Mingtang Wang, Jingbo B. Meinecke, Jasmin D. A. Matthews, Jonathan C. F. Cai, Xinlun Yang, Xuejun Wu, Junjie |
author_sort | Qiang, Xiaogang |
collection | PubMed |
description | Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications. |
format | Online Article Text |
id | pubmed-7909884 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79098842021-03-10 Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor Qiang, Xiaogang Wang, Yizhi Xue, Shichuan Ge, Renyou Chen, Lifeng Liu, Yingwen Huang, Anqi Fu, Xiang Xu, Ping Yi, Teng Xu, Fufang Deng, Mingtang Wang, Jingbo B. Meinecke, Jasmin D. A. Matthews, Jonathan C. F. Cai, Xinlun Yang, Xuejun Wu, Junjie Sci Adv Research Articles Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications. American Association for the Advancement of Science 2021-02-26 /pmc/articles/PMC7909884/ /pubmed/33637521 http://dx.doi.org/10.1126/sciadv.abb8375 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Qiang, Xiaogang Wang, Yizhi Xue, Shichuan Ge, Renyou Chen, Lifeng Liu, Yingwen Huang, Anqi Fu, Xiang Xu, Ping Yi, Teng Xu, Fufang Deng, Mingtang Wang, Jingbo B. Meinecke, Jasmin D. A. Matthews, Jonathan C. F. Cai, Xinlun Yang, Xuejun Wu, Junjie Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor |
title | Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor |
title_full | Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor |
title_fullStr | Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor |
title_full_unstemmed | Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor |
title_short | Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor |
title_sort | implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909884/ https://www.ncbi.nlm.nih.gov/pubmed/33637521 http://dx.doi.org/10.1126/sciadv.abb8375 |
work_keys_str_mv | AT qiangxiaogang implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT wangyizhi implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT xueshichuan implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT gerenyou implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT chenlifeng implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT liuyingwen implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT huanganqi implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT fuxiang implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT xuping implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT yiteng implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT xufufang implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT dengmingtang implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT wangjingbob implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT meineckejasminda implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT matthewsjonathancf implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT caixinlun implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT yangxuejun implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor AT wujunjie implementinggraphtheoreticquantumalgorithmsonasiliconphotonicquantumwalkprocessor |