Cargando…
Stochastic Channel-Based Federated Learning With Neural Network Pruning for Medical Data Privacy Preservation: Model Development and Experimental Validation
BACKGROUND: Artificial neural networks have achieved unprecedented success in the medical domain. This success depends on the availability of massive and representative datasets. However, data collection is often prevented by privacy concerns, and people want to take control over their sensitive inf...
Autores principales: | Shao, Rulin, He, Hongyu, Chen, Ziwei, Liu, Hui, Liu, Dianbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7909896/ https://www.ncbi.nlm.nih.gov/pubmed/33350391 http://dx.doi.org/10.2196/17265 |
Ejemplares similares
-
Privacy-preserving federated neural network learning for disease-associated cell classification
por: Sav, Sinem, et al.
Publicado: (2022) -
A federated graph neural network framework for privacy-preserving personalization
por: Wu, Chuhan, et al.
Publicado: (2022) -
Federated learning for preserving data privacy in collaborative
healthcare research
por: Loftus, Tyler J, et al.
Publicado: (2022) -
Communication-Efficient and Privacy-Preserving Verifiable Aggregation for Federated Learning
por: Peng, Kaixin, et al.
Publicado: (2023) -
Privacy-preserving GWAS analysis on federated genomic datasets
por: Constable, Scott D, et al.
Publicado: (2015)