Cargando…
Optical Coherence Tomography Imaging of the Lamina Cribrosa: Structural Biomarkers in Nonglaucomatous Diseases
The lamina cribrosa (LC) is an active structure that responds to the strain by changing its morphology. Abnormal changes in LC morphology are usually associated with, and indicative of, certain pathologies such as glaucoma, intraocular hypertension, and myopia. Recent developments in optical coheren...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910045/ https://www.ncbi.nlm.nih.gov/pubmed/33680508 http://dx.doi.org/10.1155/2021/8844614 |
Sumario: | The lamina cribrosa (LC) is an active structure that responds to the strain by changing its morphology. Abnormal changes in LC morphology are usually associated with, and indicative of, certain pathologies such as glaucoma, intraocular hypertension, and myopia. Recent developments in optical coherence tomography (OCT) have enabled detailed in vivo studies about the architectural characteristics of the LC. Structural characteristics of the LC have been widely explored in glaucoma management. However, information about which LC biomarkers could be useful for the diagnosis, and follow-up, of other diseases besides glaucoma is scarce. Hence, this literature review aims to summarize the role of the LC in nonophthalmic and ophthalmic diseases other than glaucoma. PubMed was used to perform a systematic review on the LC features that can be extracted from OCT images. All imaging features are presented and discussed in terms of their importance and applicability in clinical practice. A total of 56 studies were included in this review. Overall, LC depth (LCD) and thickness (LCT) have been the most studied features, appearing in 75% and 45% of the included studies, respectively. These biomarkers were followed by the prelaminar tissue thickness (21%), LC curvature index (5.4%), LC global shape index (3.6%), LC defects (3.6%), and LC strains/deformations (1.8%). Overall, the disease groups showed a thinner LC (smaller LCT) and a deeper ONH cup (larger LCD), with some exceptions. A large variability between approaches used to compute LC biomarkers has been observed, highlighting the importance of having automated and standardized methodologies in LC analysis. Moreover, further studies are needed to identify the pathologies where LC features have a diagnostic and/or prognostic value. |
---|