Cargando…
Improved protein structure refinement guided by deep learning based accuracy estimation
We develop a deep learning framework (DeepAccNet) that estimates per-residue accuracy and residue-residue distance signed error in protein models and uses these predictions to guide Rosetta protein structure refinement. The network uses 3D convolutions to evaluate local atomic environments followed...
Autores principales: | Hiranuma, Naozumi, Park, Hahnbeom, Baek, Minkyung, Anishchenko, Ivan, Dauparas, Justas, Baker, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910447/ https://www.ncbi.nlm.nih.gov/pubmed/33637700 http://dx.doi.org/10.1038/s41467-021-21511-x |
Ejemplares similares
-
Protein tertiary structure prediction and refinement using deep learning and Rosetta in CASP14
por: Anishchenko, Ivan, et al.
Publicado: (2021) -
Protein oligomer modeling guided by predicted interchain contacts in CASP14
por: Baek, Minkyung, et al.
Publicado: (2021) -
Improving de novo protein binder design with deep learning
por: Bennett, Nathaniel R., et al.
Publicado: (2023) -
Peptide-binding specificity prediction using fine-tuned protein structure prediction networks
por: Motmaen, Amir, et al.
Publicado: (2023) -
Scaffolding protein functional sites using deep
learning
por: Wang, Jue, et al.
Publicado: (2022)