Cargando…

ELAVL1a is an immunocompetent protein that protects zebrafish embryos from bacterial infection

Previous studies have shown that ELAVL1 plays multiple roles, but its overall biological function remains ill-defined. Here we clearly demonstrated that zebrafish ELAVL1a was a lipoteichoic acid (LTA)- and LPS-binding protein abundantly stored in the eggs/embryos of zebrafish. ELAVL1a acted not only...

Descripción completa

Detalles Bibliográficos
Autores principales: Ni, Shousheng, Zhou, Yang, Song, Lili, Chen, Yan, Wang, Xia, Du, Xiaoyuan, Zhang, Shicui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910469/
https://www.ncbi.nlm.nih.gov/pubmed/33637956
http://dx.doi.org/10.1038/s42003-021-01777-z
Descripción
Sumario:Previous studies have shown that ELAVL1 plays multiple roles, but its overall biological function remains ill-defined. Here we clearly demonstrated that zebrafish ELAVL1a was a lipoteichoic acid (LTA)- and LPS-binding protein abundantly stored in the eggs/embryos of zebrafish. ELAVL1a acted not only as a pattern recognition receptor, capable of identifying LTA and LPS, as well as bacteria, but also as an effector molecule, capable of inhibiting the growth of Gram-positive and -negative bacteria. Furthermore, we reveal that the C-terminal 62 residues of ELAVL1a positioned at 181–242 were indispensable for ELAVL1a antibacterial activity. Additionally, site-directed mutagenesis revealed that the hydrophobic residues Val192/Ile193, as well as the positively charged residues Arg203/Arg204, were the functional determinants contributing to the antimicrobial activity of rELAVL1a. Importantly, microinjection of rELAVL1a into embryos markedly promoted their resistance against pathogenic Aeromonas hydrophila challenge, and this pathogen-resistant activity was considerably reduced by co-injection of anti-ELAVL1a antibody or by knockdown with morpholino for elavl1a. Collectively, our results indicate that ELAVL1a is a maternal immune factor that can protect zebrafish embryos from bacterial infection. This work also provides another angle for understanding the biological roles of ELAVL1a.