Cargando…

A CSB-PAF1C axis restores processive transcription elongation after DNA damage repair

Bulky DNA lesions in transcribed strands block RNA polymerase II (RNAPII) elongation and induce a genome-wide transcriptional arrest. The transcription-coupled repair (TCR) pathway efficiently removes transcription-blocking DNA lesions, but how transcription is restored in the genome following DNA r...

Descripción completa

Detalles Bibliográficos
Autores principales: van den Heuvel, Diana, Spruijt, Cornelia G., González-Prieto, Román, Kragten, Angela, Paulsen, Michelle T., Zhou, Di, Wu, Haoyu, Apelt, Katja, van der Weegen, Yana, Yang, Kevin, Dijk, Madelon, Daxinger, Lucia, Marteijn, Jurgen A., Vertegaal, Alfred C. O., Ljungman, Mats, Vermeulen, Michiel, Luijsterburg, Martijn S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910549/
https://www.ncbi.nlm.nih.gov/pubmed/33637760
http://dx.doi.org/10.1038/s41467-021-21520-w
Descripción
Sumario:Bulky DNA lesions in transcribed strands block RNA polymerase II (RNAPII) elongation and induce a genome-wide transcriptional arrest. The transcription-coupled repair (TCR) pathway efficiently removes transcription-blocking DNA lesions, but how transcription is restored in the genome following DNA repair remains unresolved. Here, we find that the TCR-specific CSB protein loads the PAF1 complex (PAF1C) onto RNAPII in promoter-proximal regions in response to DNA damage. Although dispensable for TCR-mediated repair, PAF1C is essential for transcription recovery after UV irradiation. We find that PAF1C promotes RNAPII pause release in promoter-proximal regions and subsequently acts as a processivity factor that stimulates transcription elongation throughout genes. Our findings expose the molecular basis for a non-canonical PAF1C-dependent pathway that restores transcription throughout the human genome after genotoxic stress.