Cargando…

Ultracold atom interferometry in space

Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple s...

Descripción completa

Detalles Bibliográficos
Autores principales: Lachmann, Maike D., Ahlers, Holger, Becker, Dennis, Dinkelaker, Aline N., Grosse, Jens, Hellmig, Ortwin, Müntinga, Hauke, Schkolnik, Vladimir, Seidel, Stephan T., Wendrich, Thijs, Wenzlawski, André, Carrick, Benjamin, Gaaloul, Naceur, Lüdtke, Daniel, Braxmaier, Claus, Ertmer, Wolfgang, Krutzik, Markus, Lämmerzahl, Claus, Peters, Achim, Schleich, Wolfgang P., Sengstock, Klaus, Wicht, Andreas, Windpassinger, Patrick, Rasel, Ernst M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910597/
https://www.ncbi.nlm.nih.gov/pubmed/33637769
http://dx.doi.org/10.1038/s41467-021-21628-z
_version_ 1783656153227460608
author Lachmann, Maike D.
Ahlers, Holger
Becker, Dennis
Dinkelaker, Aline N.
Grosse, Jens
Hellmig, Ortwin
Müntinga, Hauke
Schkolnik, Vladimir
Seidel, Stephan T.
Wendrich, Thijs
Wenzlawski, André
Carrick, Benjamin
Gaaloul, Naceur
Lüdtke, Daniel
Braxmaier, Claus
Ertmer, Wolfgang
Krutzik, Markus
Lämmerzahl, Claus
Peters, Achim
Schleich, Wolfgang P.
Sengstock, Klaus
Wicht, Andreas
Windpassinger, Patrick
Rasel, Ernst M.
author_facet Lachmann, Maike D.
Ahlers, Holger
Becker, Dennis
Dinkelaker, Aline N.
Grosse, Jens
Hellmig, Ortwin
Müntinga, Hauke
Schkolnik, Vladimir
Seidel, Stephan T.
Wendrich, Thijs
Wenzlawski, André
Carrick, Benjamin
Gaaloul, Naceur
Lüdtke, Daniel
Braxmaier, Claus
Ertmer, Wolfgang
Krutzik, Markus
Lämmerzahl, Claus
Peters, Achim
Schleich, Wolfgang P.
Sengstock, Klaus
Wicht, Andreas
Windpassinger, Patrick
Rasel, Ernst M.
author_sort Lachmann, Maike D.
collection PubMed
description Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.
format Online
Article
Text
id pubmed-7910597
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-79105972021-03-04 Ultracold atom interferometry in space Lachmann, Maike D. Ahlers, Holger Becker, Dennis Dinkelaker, Aline N. Grosse, Jens Hellmig, Ortwin Müntinga, Hauke Schkolnik, Vladimir Seidel, Stephan T. Wendrich, Thijs Wenzlawski, André Carrick, Benjamin Gaaloul, Naceur Lüdtke, Daniel Braxmaier, Claus Ertmer, Wolfgang Krutzik, Markus Lämmerzahl, Claus Peters, Achim Schleich, Wolfgang P. Sengstock, Klaus Wicht, Andreas Windpassinger, Patrick Rasel, Ernst M. Nat Commun Article Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation. Nature Publishing Group UK 2021-02-26 /pmc/articles/PMC7910597/ /pubmed/33637769 http://dx.doi.org/10.1038/s41467-021-21628-z Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Lachmann, Maike D.
Ahlers, Holger
Becker, Dennis
Dinkelaker, Aline N.
Grosse, Jens
Hellmig, Ortwin
Müntinga, Hauke
Schkolnik, Vladimir
Seidel, Stephan T.
Wendrich, Thijs
Wenzlawski, André
Carrick, Benjamin
Gaaloul, Naceur
Lüdtke, Daniel
Braxmaier, Claus
Ertmer, Wolfgang
Krutzik, Markus
Lämmerzahl, Claus
Peters, Achim
Schleich, Wolfgang P.
Sengstock, Klaus
Wicht, Andreas
Windpassinger, Patrick
Rasel, Ernst M.
Ultracold atom interferometry in space
title Ultracold atom interferometry in space
title_full Ultracold atom interferometry in space
title_fullStr Ultracold atom interferometry in space
title_full_unstemmed Ultracold atom interferometry in space
title_short Ultracold atom interferometry in space
title_sort ultracold atom interferometry in space
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910597/
https://www.ncbi.nlm.nih.gov/pubmed/33637769
http://dx.doi.org/10.1038/s41467-021-21628-z
work_keys_str_mv AT lachmannmaiked ultracoldatominterferometryinspace
AT ahlersholger ultracoldatominterferometryinspace
AT beckerdennis ultracoldatominterferometryinspace
AT dinkelakeralinen ultracoldatominterferometryinspace
AT grossejens ultracoldatominterferometryinspace
AT hellmigortwin ultracoldatominterferometryinspace
AT muntingahauke ultracoldatominterferometryinspace
AT schkolnikvladimir ultracoldatominterferometryinspace
AT seidelstephant ultracoldatominterferometryinspace
AT wendrichthijs ultracoldatominterferometryinspace
AT wenzlawskiandre ultracoldatominterferometryinspace
AT carrickbenjamin ultracoldatominterferometryinspace
AT gaaloulnaceur ultracoldatominterferometryinspace
AT ludtkedaniel ultracoldatominterferometryinspace
AT braxmaierclaus ultracoldatominterferometryinspace
AT ertmerwolfgang ultracoldatominterferometryinspace
AT krutzikmarkus ultracoldatominterferometryinspace
AT lammerzahlclaus ultracoldatominterferometryinspace
AT petersachim ultracoldatominterferometryinspace
AT schleichwolfgangp ultracoldatominterferometryinspace
AT sengstockklaus ultracoldatominterferometryinspace
AT wichtandreas ultracoldatominterferometryinspace
AT windpassingerpatrick ultracoldatominterferometryinspace
AT raselernstm ultracoldatominterferometryinspace