Cargando…
Machine learning in spectral domain
Deep neural networks are usually trained in the space of the nodes, by adjusting the weights of existing links via suitable optimization protocols. We here propose a radically new approach which anchors the learning process to reciprocal space. Specifically, the training acts on the spectral domain...
Autores principales: | Giambagli, Lorenzo, Buffoni, Lorenzo, Carletti, Timoteo, Nocentini, Walter, Fanelli, Duccio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910623/ https://www.ncbi.nlm.nih.gov/pubmed/33637729 http://dx.doi.org/10.1038/s41467-021-21481-0 |
Ejemplares similares
-
Spectral pruning of fully connected layers
por: Buffoni, Lorenzo, et al.
Publicado: (2022) -
COVID-19: The unreasonable effectiveness of simple models
por: Carletti, Timoteo, et al.
Publicado: (2020) -
Turing instabilities on Cartesian product networks
por: Asllani, Malbor, et al.
Publicado: (2015) -
Driving forces of researchers mobility
por: Gargiulo, Floriana, et al.
Publicado: (2014) -
Accuracy of a Machine-Learning Algorithm for Detecting and Classifying Choroidal Neovascularization on Spectral-Domain Optical Coherence Tomography
por: Maunz, Andreas, et al.
Publicado: (2021)