Cargando…
The human visual system and CNNs can both support robust online translation tolerance following extreme displacements
Visual translation tolerance refers to our capacity to recognize objects over a wide range of different retinal locations. Although translation is perhaps the simplest spatial transform that the visual system needs to cope with, the extent to which the human visual system can identify objects at pre...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910631/ https://www.ncbi.nlm.nih.gov/pubmed/33620380 http://dx.doi.org/10.1167/jov.21.2.9 |
_version_ | 1783656161237532672 |
---|---|
author | Blything, Ryan Biscione, Valerio Vankov, Ivan I. Ludwig, Casimir J. H. Bowers, Jeffrey S. |
author_facet | Blything, Ryan Biscione, Valerio Vankov, Ivan I. Ludwig, Casimir J. H. Bowers, Jeffrey S. |
author_sort | Blything, Ryan |
collection | PubMed |
description | Visual translation tolerance refers to our capacity to recognize objects over a wide range of different retinal locations. Although translation is perhaps the simplest spatial transform that the visual system needs to cope with, the extent to which the human visual system can identify objects at previously unseen locations is unclear, with some studies reporting near complete invariance over 10 degrees and other reporting zero invariance at 4 degrees of visual angle. Similarly, there is confusion regarding the extent of translation tolerance in computational models of vision, as well as the degree of match between human and model performance. Here, we report a series of eye-tracking studies (total N = 70) demonstrating that novel objects trained at one retinal location can be recognized at high accuracy rates following translations up to 18 degrees. We also show that standard deep convolutional neural networks (DCNNs) support our findings when pretrained to classify another set of stimuli across a range of locations, or when a global average pooling (GAP) layer is added to produce larger receptive fields. Our findings provide a strong constraint for theories of human vision and help explain inconsistent findings previously reported with convolutional neural networks (CNNs). |
format | Online Article Text |
id | pubmed-7910631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-79106312021-03-03 The human visual system and CNNs can both support robust online translation tolerance following extreme displacements Blything, Ryan Biscione, Valerio Vankov, Ivan I. Ludwig, Casimir J. H. Bowers, Jeffrey S. J Vis Article Visual translation tolerance refers to our capacity to recognize objects over a wide range of different retinal locations. Although translation is perhaps the simplest spatial transform that the visual system needs to cope with, the extent to which the human visual system can identify objects at previously unseen locations is unclear, with some studies reporting near complete invariance over 10 degrees and other reporting zero invariance at 4 degrees of visual angle. Similarly, there is confusion regarding the extent of translation tolerance in computational models of vision, as well as the degree of match between human and model performance. Here, we report a series of eye-tracking studies (total N = 70) demonstrating that novel objects trained at one retinal location can be recognized at high accuracy rates following translations up to 18 degrees. We also show that standard deep convolutional neural networks (DCNNs) support our findings when pretrained to classify another set of stimuli across a range of locations, or when a global average pooling (GAP) layer is added to produce larger receptive fields. Our findings provide a strong constraint for theories of human vision and help explain inconsistent findings previously reported with convolutional neural networks (CNNs). The Association for Research in Vision and Ophthalmology 2021-02-23 /pmc/articles/PMC7910631/ /pubmed/33620380 http://dx.doi.org/10.1167/jov.21.2.9 Text en Copyright 2021 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Article Blything, Ryan Biscione, Valerio Vankov, Ivan I. Ludwig, Casimir J. H. Bowers, Jeffrey S. The human visual system and CNNs can both support robust online translation tolerance following extreme displacements |
title | The human visual system and CNNs can both support robust online translation tolerance following extreme displacements |
title_full | The human visual system and CNNs can both support robust online translation tolerance following extreme displacements |
title_fullStr | The human visual system and CNNs can both support robust online translation tolerance following extreme displacements |
title_full_unstemmed | The human visual system and CNNs can both support robust online translation tolerance following extreme displacements |
title_short | The human visual system and CNNs can both support robust online translation tolerance following extreme displacements |
title_sort | human visual system and cnns can both support robust online translation tolerance following extreme displacements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910631/ https://www.ncbi.nlm.nih.gov/pubmed/33620380 http://dx.doi.org/10.1167/jov.21.2.9 |
work_keys_str_mv | AT blythingryan thehumanvisualsystemandcnnscanbothsupportrobustonlinetranslationtolerancefollowingextremedisplacements AT biscionevalerio thehumanvisualsystemandcnnscanbothsupportrobustonlinetranslationtolerancefollowingextremedisplacements AT vankovivani thehumanvisualsystemandcnnscanbothsupportrobustonlinetranslationtolerancefollowingextremedisplacements AT ludwigcasimirjh thehumanvisualsystemandcnnscanbothsupportrobustonlinetranslationtolerancefollowingextremedisplacements AT bowersjeffreys thehumanvisualsystemandcnnscanbothsupportrobustonlinetranslationtolerancefollowingextremedisplacements AT blythingryan humanvisualsystemandcnnscanbothsupportrobustonlinetranslationtolerancefollowingextremedisplacements AT biscionevalerio humanvisualsystemandcnnscanbothsupportrobustonlinetranslationtolerancefollowingextremedisplacements AT vankovivani humanvisualsystemandcnnscanbothsupportrobustonlinetranslationtolerancefollowingextremedisplacements AT ludwigcasimirjh humanvisualsystemandcnnscanbothsupportrobustonlinetranslationtolerancefollowingextremedisplacements AT bowersjeffreys humanvisualsystemandcnnscanbothsupportrobustonlinetranslationtolerancefollowingextremedisplacements |