Cargando…
Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature
This work concerns the theoretical description of the quantum dynamics of molecular junctions with thermal fluctuations and probability losses. To this end, we propose a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments. Along the lines discussed in [A...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910896/ https://www.ncbi.nlm.nih.gov/pubmed/33504072 http://dx.doi.org/10.3390/e23020147 |
_version_ | 1783656219215396864 |
---|---|
author | Grimaldi, Andrea Sergi, Alessandro Messina, Antonino |
author_facet | Grimaldi, Andrea Sergi, Alessandro Messina, Antonino |
author_sort | Grimaldi, Andrea |
collection | PubMed |
description | This work concerns the theoretical description of the quantum dynamics of molecular junctions with thermal fluctuations and probability losses. To this end, we propose a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments. Along the lines discussed in [A. Sergi et al., Symmetry 10 518 (2018)], we adopt the operator-valued Wigner formulation of quantum mechanics (wherein the density matrix depends on the points of the Wigner phase space associated to the system) and derive a non-linear equation of motion. Moreover, we introduce a model for a non-Hermitian quantum single-molecule junction (nHQSMJ). In this model the leads are mapped to a tunneling two-level system, which is in turn coupled to a harmonic mode (i.e., the molecule). A decay operator acting on the two-level system describes phenomenologically probability losses. Finally, the temperature of the molecule is controlled by means of a Nosé-Hoover chain thermostat. A numerical study of the quantum dynamics of this toy model at different temperatures is reported. We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction. The possibility that the formalism here presented can be extended to treat both more quantum states ([Formula: see text]) and many more classical modes or atomic particles ([Formula: see text]) is highlighted. |
format | Online Article Text |
id | pubmed-7910896 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79108962021-02-28 Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature Grimaldi, Andrea Sergi, Alessandro Messina, Antonino Entropy (Basel) Article This work concerns the theoretical description of the quantum dynamics of molecular junctions with thermal fluctuations and probability losses. To this end, we propose a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments. Along the lines discussed in [A. Sergi et al., Symmetry 10 518 (2018)], we adopt the operator-valued Wigner formulation of quantum mechanics (wherein the density matrix depends on the points of the Wigner phase space associated to the system) and derive a non-linear equation of motion. Moreover, we introduce a model for a non-Hermitian quantum single-molecule junction (nHQSMJ). In this model the leads are mapped to a tunneling two-level system, which is in turn coupled to a harmonic mode (i.e., the molecule). A decay operator acting on the two-level system describes phenomenologically probability losses. Finally, the temperature of the molecule is controlled by means of a Nosé-Hoover chain thermostat. A numerical study of the quantum dynamics of this toy model at different temperatures is reported. We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction. The possibility that the formalism here presented can be extended to treat both more quantum states ([Formula: see text]) and many more classical modes or atomic particles ([Formula: see text]) is highlighted. MDPI 2021-01-25 /pmc/articles/PMC7910896/ /pubmed/33504072 http://dx.doi.org/10.3390/e23020147 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Grimaldi, Andrea Sergi, Alessandro Messina, Antonino Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature |
title | Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature |
title_full | Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature |
title_fullStr | Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature |
title_full_unstemmed | Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature |
title_short | Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature |
title_sort | evolution of a non-hermitian quantum single-molecule junction at constant temperature |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910896/ https://www.ncbi.nlm.nih.gov/pubmed/33504072 http://dx.doi.org/10.3390/e23020147 |
work_keys_str_mv | AT grimaldiandrea evolutionofanonhermitianquantumsinglemoleculejunctionatconstanttemperature AT sergialessandro evolutionofanonhermitianquantumsinglemoleculejunctionatconstanttemperature AT messinaantonino evolutionofanonhermitianquantumsinglemoleculejunctionatconstanttemperature |