Cargando…
Modifications in the Topological Structure of EEG Functional Connectivity Networks during Listening Tonal and Atonal Concert Music in Musicians and Non-Musicians
The present work aims to demonstrate the hypothesis that atonal music modifies the topological structure of electroencephalographic (EEG) connectivity networks in relation to tonal music. To this, EEG monopolar records were taken in musicians and non-musicians while listening to tonal, atonal, and p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910933/ https://www.ncbi.nlm.nih.gov/pubmed/33530384 http://dx.doi.org/10.3390/brainsci11020159 |
_version_ | 1783656228028678144 |
---|---|
author | González, Almudena Santapau, Manuel Gamundí, Antoni Pereda, Ernesto González, Julián J. |
author_facet | González, Almudena Santapau, Manuel Gamundí, Antoni Pereda, Ernesto González, Julián J. |
author_sort | González, Almudena |
collection | PubMed |
description | The present work aims to demonstrate the hypothesis that atonal music modifies the topological structure of electroencephalographic (EEG) connectivity networks in relation to tonal music. To this, EEG monopolar records were taken in musicians and non-musicians while listening to tonal, atonal, and pink noise sound excerpts. EEG functional connectivities (FC) among channels assessed by a phase synchronization index previously thresholded using surrogate data test were computed. Sound effects, on the topological structure of graph-based networks assembled with the EEG-FCs at different frequency-bands, were analyzed throughout graph metric and network-based statistic (NBS). Local and global efficiency normalized (vs. random-network) measurements (NLE|NGE) assessing network information exchanges were able to discriminate both music styles irrespective of groups and frequency-bands. During tonal audition, NLE and NGE values in the beta-band network get close to that of a small-world network, while during atonal and even more during noise its structure moved away from small-world. These effects were attributed to the different timbre characteristics (sounds spectral centroid and entropy) and different musical structure. Results from networks topographic maps for strength and NLE of the nodes, and for FC subnets obtained from the NBS, allowed discriminating the musical styles and verifying the different strength, NLE, and FC of musicians compared to non-musicians. |
format | Online Article Text |
id | pubmed-7910933 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79109332021-02-28 Modifications in the Topological Structure of EEG Functional Connectivity Networks during Listening Tonal and Atonal Concert Music in Musicians and Non-Musicians González, Almudena Santapau, Manuel Gamundí, Antoni Pereda, Ernesto González, Julián J. Brain Sci Article The present work aims to demonstrate the hypothesis that atonal music modifies the topological structure of electroencephalographic (EEG) connectivity networks in relation to tonal music. To this, EEG monopolar records were taken in musicians and non-musicians while listening to tonal, atonal, and pink noise sound excerpts. EEG functional connectivities (FC) among channels assessed by a phase synchronization index previously thresholded using surrogate data test were computed. Sound effects, on the topological structure of graph-based networks assembled with the EEG-FCs at different frequency-bands, were analyzed throughout graph metric and network-based statistic (NBS). Local and global efficiency normalized (vs. random-network) measurements (NLE|NGE) assessing network information exchanges were able to discriminate both music styles irrespective of groups and frequency-bands. During tonal audition, NLE and NGE values in the beta-band network get close to that of a small-world network, while during atonal and even more during noise its structure moved away from small-world. These effects were attributed to the different timbre characteristics (sounds spectral centroid and entropy) and different musical structure. Results from networks topographic maps for strength and NLE of the nodes, and for FC subnets obtained from the NBS, allowed discriminating the musical styles and verifying the different strength, NLE, and FC of musicians compared to non-musicians. MDPI 2021-01-26 /pmc/articles/PMC7910933/ /pubmed/33530384 http://dx.doi.org/10.3390/brainsci11020159 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article González, Almudena Santapau, Manuel Gamundí, Antoni Pereda, Ernesto González, Julián J. Modifications in the Topological Structure of EEG Functional Connectivity Networks during Listening Tonal and Atonal Concert Music in Musicians and Non-Musicians |
title | Modifications in the Topological Structure of EEG Functional Connectivity Networks during Listening Tonal and Atonal Concert Music in Musicians and Non-Musicians |
title_full | Modifications in the Topological Structure of EEG Functional Connectivity Networks during Listening Tonal and Atonal Concert Music in Musicians and Non-Musicians |
title_fullStr | Modifications in the Topological Structure of EEG Functional Connectivity Networks during Listening Tonal and Atonal Concert Music in Musicians and Non-Musicians |
title_full_unstemmed | Modifications in the Topological Structure of EEG Functional Connectivity Networks during Listening Tonal and Atonal Concert Music in Musicians and Non-Musicians |
title_short | Modifications in the Topological Structure of EEG Functional Connectivity Networks during Listening Tonal and Atonal Concert Music in Musicians and Non-Musicians |
title_sort | modifications in the topological structure of eeg functional connectivity networks during listening tonal and atonal concert music in musicians and non-musicians |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910933/ https://www.ncbi.nlm.nih.gov/pubmed/33530384 http://dx.doi.org/10.3390/brainsci11020159 |
work_keys_str_mv | AT gonzalezalmudena modificationsinthetopologicalstructureofeegfunctionalconnectivitynetworksduringlisteningtonalandatonalconcertmusicinmusiciansandnonmusicians AT santapaumanuel modificationsinthetopologicalstructureofeegfunctionalconnectivitynetworksduringlisteningtonalandatonalconcertmusicinmusiciansandnonmusicians AT gamundiantoni modificationsinthetopologicalstructureofeegfunctionalconnectivitynetworksduringlisteningtonalandatonalconcertmusicinmusiciansandnonmusicians AT peredaernesto modificationsinthetopologicalstructureofeegfunctionalconnectivitynetworksduringlisteningtonalandatonalconcertmusicinmusiciansandnonmusicians AT gonzalezjulianj modificationsinthetopologicalstructureofeegfunctionalconnectivitynetworksduringlisteningtonalandatonalconcertmusicinmusiciansandnonmusicians |