Cargando…
Sharp Guarantees and Optimal Performance for Inference in Binary and Gaussian-Mixture Models †
We study convex empirical risk minimization for high-dimensional inference in binary linear classification under both discriminative binary linear models, as well as generative Gaussian-mixture models. Our first result sharply predicts the statistical performance of such estimators in the proportion...
Autores principales: | Taheri, Hossein, Pedarsani, Ramtin, Thrampoulidis, Christos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910944/ https://www.ncbi.nlm.nih.gov/pubmed/33573327 http://dx.doi.org/10.3390/e23020178 |
Ejemplares similares
-
Distribution Optimization: An evolutionary algorithm to separate Gaussian mixtures
por: Lerch, Florian, et al.
Publicado: (2020) -
Spike sorting with Gaussian mixture models
por: Souza, Bryan C., et al.
Publicado: (2019) -
A new family of modified Gaussian copulas for market consistent valuation of government guarantees
por: Cerqueti, Roy, et al.
Publicado: (2022) -
Bayesian Inference-Based Gaussian Mixture Models With Optimal Components Estimation Towards Large-Scale Synthetic Data Generation for In Silico Clinical Trials
Publicado: (2022) -
Nanopower Integrated Gaussian Mixture Model Classifier for Epileptic Seizure Prediction
por: Alimisis, Vassilis, et al.
Publicado: (2022)