Cargando…

Investigation of Fusion between Nanosized Lipid Vesicles and a Lipid Monolayer Toward Formation of Giant Lipid Vesicles with Various Kinds of Biomolecules

We determined the properties of fusion between large unilamellar vesicles (LUVs) and the lipid monolayer by measuring the fluorescence intensity of rhodamine-conjugated phospholipids in cell-sized lipid vesicles. The charge of LUVs (containing cationic lipids) and lipid droplets (containing anionic...

Descripción completa

Detalles Bibliográficos
Autores principales: Kamiya, Koki, Arisaka, Chika, Suzuki, Masato
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911008/
https://www.ncbi.nlm.nih.gov/pubmed/33530580
http://dx.doi.org/10.3390/mi12020133
Descripción
Sumario:We determined the properties of fusion between large unilamellar vesicles (LUVs) and the lipid monolayer by measuring the fluorescence intensity of rhodamine-conjugated phospholipids in cell-sized lipid vesicles. The charge of LUVs (containing cationic lipids) and lipid droplets (containing anionic lipids) promoted lipid membrane fusion. We also investigated the formation of cell-sized lipid vesicles with asymmetric lipid distribution using this fusion method. Moreover, cell-sized asymmetric ganglioside vesicles can be generated from the planar lipid bilayer formed at the interface between the lipid droplets with/without LUVs containing ganglioside. The flip-flop dynamics of ganglioside were observed on the asymmetric ganglioside vesicles. This fusion method can be used to form asymmetric lipid vesicles with poor solubility in n-decane or lipid vesicles containing various types of membrane proteins for the development of complex artificial cell models.