Cargando…
Improving the Accuracy of Nearest-Neighbor Classification Using Principled Construction and Stochastic Sampling of Training-Set Centroids
A conceptually simple way to classify images is to directly compare test-set data and training-set data. The accuracy of this approach is limited by the method of comparison used, and by the extent to which the training-set data cover configuration space. Here we show that this coverage can be subst...
Autor principal: | Whitelam, Stephen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911166/ https://www.ncbi.nlm.nih.gov/pubmed/33530507 http://dx.doi.org/10.3390/e23020149 |
Ejemplares similares
-
Feature selection and nearest centroid classification for protein mass spectrometry
por: Levner, Ilya
Publicado: (2005) -
Optimality Driven Nearest Centroid Classification from Genomic Data
por: Dabney, Alan R., et al.
Publicado: (2007) -
Nearest shrunken centroids via alternative genewise shrinkages
por: Choi, Byeong Yeob, et al.
Publicado: (2017) -
VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition
por: France, Michael T., et al.
Publicado: (2020) -
Nearest-neighbor classifier as a tool for classification of protein
families
por: Chaurasiya, Mona, et al.
Publicado: (2010)