Cargando…

Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy

Silicon nitride–zirconia–graphene composites with high graphene content (5 wt.% and 30 wt.%) were sintered by gas pressure sintering (GPS). The effect of the multilayer graphene (MLG) content on microstructure and fracture mechanism is investigated by multi-scale and in-situ microscopy. Multi-scale...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Zhongquan, Standke, Yvonne, Gluch, Jürgen, Balázsi, Katalin, Pathak, Onkar, Höhn, Sören, Herrmann, Mathias, Werner, Stephan, Dusza, Ján, Balázsi, Csaba, Zschech, Ehrenfried
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911286/
https://www.ncbi.nlm.nih.gov/pubmed/33499119
http://dx.doi.org/10.3390/nano11020285
_version_ 1783656305776394240
author Liao, Zhongquan
Standke, Yvonne
Gluch, Jürgen
Balázsi, Katalin
Pathak, Onkar
Höhn, Sören
Herrmann, Mathias
Werner, Stephan
Dusza, Ján
Balázsi, Csaba
Zschech, Ehrenfried
author_facet Liao, Zhongquan
Standke, Yvonne
Gluch, Jürgen
Balázsi, Katalin
Pathak, Onkar
Höhn, Sören
Herrmann, Mathias
Werner, Stephan
Dusza, Ján
Balázsi, Csaba
Zschech, Ehrenfried
author_sort Liao, Zhongquan
collection PubMed
description Silicon nitride–zirconia–graphene composites with high graphene content (5 wt.% and 30 wt.%) were sintered by gas pressure sintering (GPS). The effect of the multilayer graphene (MLG) content on microstructure and fracture mechanism is investigated by multi-scale and in-situ microscopy. Multi-scale microscopy confirms that the phases disperse evenly in the microstructure without obvious agglomeration. The MLG flakes well dispersed between ceramic matrix grains slow down the phase transformation from α to β-Si(3)N(4), subsequent needle-like growth of β-Si(3)N(4) rods and the densification due to the reduction in sintering additives particularly in the case with 30 wt.% MLG. The size distribution of Si(3)N(4) phase shifts towards a larger size range with the increase in graphene content from 5 to 30 wt.%, while a higher graphene content (30 wt.%) hinders the growth of the ZrO(2) phase. The composite with 30 wt.% MLG has a porosity of 47%, the one with 5 wt.% exhibits a porosity of approximately 30%. Both Si(3)N(4)/MLG composites show potential resistance to contact or indentation damage. Crack initiation and propagation, densification of the porous microstructure, and shift of ceramic phases are observed using in-situ transmission electron microscopy. The crack propagates through the ceramic/MLG interface and through both the ceramic and the non-ceramic components in the composite with low graphene content. However, the crack prefers to bypass ceramic phases in the composite with 30 wt.% MLG.
format Online
Article
Text
id pubmed-7911286
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79112862021-02-28 Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy Liao, Zhongquan Standke, Yvonne Gluch, Jürgen Balázsi, Katalin Pathak, Onkar Höhn, Sören Herrmann, Mathias Werner, Stephan Dusza, Ján Balázsi, Csaba Zschech, Ehrenfried Nanomaterials (Basel) Article Silicon nitride–zirconia–graphene composites with high graphene content (5 wt.% and 30 wt.%) were sintered by gas pressure sintering (GPS). The effect of the multilayer graphene (MLG) content on microstructure and fracture mechanism is investigated by multi-scale and in-situ microscopy. Multi-scale microscopy confirms that the phases disperse evenly in the microstructure without obvious agglomeration. The MLG flakes well dispersed between ceramic matrix grains slow down the phase transformation from α to β-Si(3)N(4), subsequent needle-like growth of β-Si(3)N(4) rods and the densification due to the reduction in sintering additives particularly in the case with 30 wt.% MLG. The size distribution of Si(3)N(4) phase shifts towards a larger size range with the increase in graphene content from 5 to 30 wt.%, while a higher graphene content (30 wt.%) hinders the growth of the ZrO(2) phase. The composite with 30 wt.% MLG has a porosity of 47%, the one with 5 wt.% exhibits a porosity of approximately 30%. Both Si(3)N(4)/MLG composites show potential resistance to contact or indentation damage. Crack initiation and propagation, densification of the porous microstructure, and shift of ceramic phases are observed using in-situ transmission electron microscopy. The crack propagates through the ceramic/MLG interface and through both the ceramic and the non-ceramic components in the composite with low graphene content. However, the crack prefers to bypass ceramic phases in the composite with 30 wt.% MLG. MDPI 2021-01-22 /pmc/articles/PMC7911286/ /pubmed/33499119 http://dx.doi.org/10.3390/nano11020285 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liao, Zhongquan
Standke, Yvonne
Gluch, Jürgen
Balázsi, Katalin
Pathak, Onkar
Höhn, Sören
Herrmann, Mathias
Werner, Stephan
Dusza, Ján
Balázsi, Csaba
Zschech, Ehrenfried
Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy
title Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy
title_full Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy
title_fullStr Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy
title_full_unstemmed Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy
title_short Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy
title_sort microstructure and fracture mechanism investigation of porous silicon nitride–zirconia–graphene composite using multi-scale and in-situ microscopy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911286/
https://www.ncbi.nlm.nih.gov/pubmed/33499119
http://dx.doi.org/10.3390/nano11020285
work_keys_str_mv AT liaozhongquan microstructureandfracturemechanisminvestigationofporoussiliconnitridezirconiagraphenecompositeusingmultiscaleandinsitumicroscopy
AT standkeyvonne microstructureandfracturemechanisminvestigationofporoussiliconnitridezirconiagraphenecompositeusingmultiscaleandinsitumicroscopy
AT gluchjurgen microstructureandfracturemechanisminvestigationofporoussiliconnitridezirconiagraphenecompositeusingmultiscaleandinsitumicroscopy
AT balazsikatalin microstructureandfracturemechanisminvestigationofporoussiliconnitridezirconiagraphenecompositeusingmultiscaleandinsitumicroscopy
AT pathakonkar microstructureandfracturemechanisminvestigationofporoussiliconnitridezirconiagraphenecompositeusingmultiscaleandinsitumicroscopy
AT hohnsoren microstructureandfracturemechanisminvestigationofporoussiliconnitridezirconiagraphenecompositeusingmultiscaleandinsitumicroscopy
AT herrmannmathias microstructureandfracturemechanisminvestigationofporoussiliconnitridezirconiagraphenecompositeusingmultiscaleandinsitumicroscopy
AT wernerstephan microstructureandfracturemechanisminvestigationofporoussiliconnitridezirconiagraphenecompositeusingmultiscaleandinsitumicroscopy
AT duszajan microstructureandfracturemechanisminvestigationofporoussiliconnitridezirconiagraphenecompositeusingmultiscaleandinsitumicroscopy
AT balazsicsaba microstructureandfracturemechanisminvestigationofporoussiliconnitridezirconiagraphenecompositeusingmultiscaleandinsitumicroscopy
AT zschechehrenfried microstructureandfracturemechanisminvestigationofporoussiliconnitridezirconiagraphenecompositeusingmultiscaleandinsitumicroscopy