Cargando…

The Role of Hydrogen on the Behavior of Intergranular Cracks in Bicrystalline α-Fe Nanowires

Hydrogen embrittlement (HE) has been extensively studied in bulk materials. However, little is known about the role of H on the plastic deformation and fracture mechanisms of nanoscale materials such as nanowires. In this study, molecular dynamics simulations are employed to study the influence of H...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jiaqing, Lu, Cheng, Wang, Long, Pei, Linqing, Godbole, Ajit, Michal, Guillaume
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911322/
https://www.ncbi.nlm.nih.gov/pubmed/33498659
http://dx.doi.org/10.3390/nano11020294
Descripción
Sumario:Hydrogen embrittlement (HE) has been extensively studied in bulk materials. However, little is known about the role of H on the plastic deformation and fracture mechanisms of nanoscale materials such as nanowires. In this study, molecular dynamics simulations are employed to study the influence of H segregation on the behavior of intergranular cracks in bicrystalline α-Fe nanowires. The results demonstrate that segregated H atoms have weak embrittling effects on the predicted ductile cracks along the GBs, but favor the cleavage process of intergranular cracks in the theoretically brittle directions. Furthermore, it is revealed that cyclic loading can promote the H accumulation into the GB region ahead of the crack tip and overcome crack trapping, thus inducing a ductile-to-brittle transformation. This information will deepen our understanding on the experimentally-observed H-assisted brittle cleavage failure and have implications for designing new nanocrystalline materials with high resistance to HE.