Cargando…
Malicious URL Detection Based on Associative Classification
Cybercriminals use malicious URLs as distribution channels to propagate malware over the web. Attackers exploit vulnerabilities in browsers to install malware to have access to the victim’s computer remotely. The purpose of most malware is to gain access to a network, ex-filtrate sensitive informati...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911559/ https://www.ncbi.nlm.nih.gov/pubmed/33572521 http://dx.doi.org/10.3390/e23020182 |
Sumario: | Cybercriminals use malicious URLs as distribution channels to propagate malware over the web. Attackers exploit vulnerabilities in browsers to install malware to have access to the victim’s computer remotely. The purpose of most malware is to gain access to a network, ex-filtrate sensitive information, and secretly monitor targeted computer systems. In this paper, a data mining approach known as classification based on association (CBA) to detect malicious URLs using URL and webpage content features is presented. The CBA algorithm uses a training dataset of URLs as historical data to discover association rules to build an accurate classifier. The experimental results show that CBA gives comparable performance against benchmark classification algorithms, achieving 95.8% accuracy with low false positive and negative rates. |
---|