Cargando…
A New Deep Dual Temporal Domain Adaptation Method for Online Detection of Bearings Early Fault
With the quick development of sensor technology in recent years, online detection of early fault without system halt has received much attention in the field of bearing prognostics and health management. While lacking representative samples of the online data, one can try to adapt the previously-lea...
Autores principales: | Mao, Wentao, Sun, Bin, Wang, Liyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911564/ https://www.ncbi.nlm.nih.gov/pubmed/33572849 http://dx.doi.org/10.3390/e23020162 |
Ejemplares similares
-
Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
por: Chao, Ko-Chieh, et al.
Publicado: (2022) -
A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings
por: Kang, Yuxiang, et al.
Publicado: (2023) -
A New Universal Domain Adaptive Method for Diagnosing Unknown Bearing Faults
por: Yan, Zhenhao, et al.
Publicado: (2021) -
Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing
por: Shao, Xiaorui, et al.
Publicado: (2022)