Cargando…

Elliptic Solutions of Dynamical Lucas Sequences

We study two types of dynamical extensions of Lucas sequences and give elliptic solutions for them. The first type concerns a level-dependent (or discrete time-dependent) version involving commuting variables. We show that a nice solution for this system is given by elliptic numbers. The second type...

Descripción completa

Detalles Bibliográficos
Autores principales: Schlosser, Michael J., Yoo, Meesue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911698/
https://www.ncbi.nlm.nih.gov/pubmed/33572530
http://dx.doi.org/10.3390/e23020183
Descripción
Sumario:We study two types of dynamical extensions of Lucas sequences and give elliptic solutions for them. The first type concerns a level-dependent (or discrete time-dependent) version involving commuting variables. We show that a nice solution for this system is given by elliptic numbers. The second type involves a non-commutative version of Lucas sequences which defines the non-commutative (or abstract) Fibonacci polynomials introduced by Johann Cigler. If the non-commuting variables are specialized to be elliptic-commuting variables the abstract Fibonacci polynomials become non-commutative elliptic Fibonacci polynomials. Some properties we derive for these include their explicit expansion in terms of normalized monomials and a non-commutative elliptic Euler–Cassini identity.