Cargando…
BrainSeg-Net: Brain Tumor MR Image Segmentation via Enhanced Encoder–Decoder Network
Efficient segmentation of Magnetic Resonance (MR) brain tumor images is of the utmost value for the diagnosis of tumor region. In recent years, advancement in the field of neural networks has been used to refine the segmentation performance of brain tumor sub-regions. The brain tumor segmentation ha...
Autores principales: | Rehman, Mobeen Ur, Cho, SeungBin, Kim, Jeehong, Chong, Kil To |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911842/ https://www.ncbi.nlm.nih.gov/pubmed/33504047 http://dx.doi.org/10.3390/diagnostics11020169 |
Ejemplares similares
-
SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
COVID-SegNet: encoder–decoder-based architecture for COVID-19 lesion segmentation in chest X-ray
por: Agrawal, Tarun, et al.
Publicado: (2023) -
Brain SegNet: 3D local refinement network for brain lesion segmentation
por: Hu, Xiaojun, et al.
Publicado: (2020) -
Learning U-Net Based Multi-Scale Features in Encoding-Decoding for MR Image Brain Tissue Segmentation
por: Long, Jiao-Song, et al.
Publicado: (2021) -
Multi-Scale Squeeze U-SegNet with Multi Global Attention for Brain MRI Segmentation
por: Dayananda, Chaitra, et al.
Publicado: (2021)