Cargando…
Influence Cascades: Entropy-Based Characterization of Behavioral Influence Patterns in Social Media
Influence cascades are typically analyzed using a single metric approach, i.e., all influence is measured using one number. However, social influence is not monolithic; different users exercise different influences in different ways, and influence is correlated with the user and content-specific att...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912022/ https://www.ncbi.nlm.nih.gov/pubmed/33525557 http://dx.doi.org/10.3390/e23020160 |
Sumario: | Influence cascades are typically analyzed using a single metric approach, i.e., all influence is measured using one number. However, social influence is not monolithic; different users exercise different influences in different ways, and influence is correlated with the user and content-specific attributes. One such attribute could be whether the action is an initiation of a new post, a contribution to a post, or a sharing of an existing post. In this paper, we present a novel method for tracking these influence relationships over time, which we call influence cascades, and present a visualization technique to better understand these cascades. We investigate these influence patterns within and across online social media platforms using empirical data and comparing to a scale-free network as a null model. Our results show that characteristics of influence cascades and patterns of influence are, in fact, affected by the platform and the community of the users. |
---|