Cargando…
Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells
Anion exchange membrane fuel cells (AEMFC) are potentially very low-cost replacements for proton exchange membrane fuel cells. However, AEMFCs suffer from one very serious drawback: significant performance loss when CO(2) is present in the reacting oxidant gas (e.g., air) due to carbonation. Althoug...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912077/ https://www.ncbi.nlm.nih.gov/pubmed/33572590 http://dx.doi.org/10.3390/membranes11020102 |
_version_ | 1783656492231032832 |
---|---|
author | Zheng, Yiwei Irizarry Colón, Lyzmarie Nicole Ul Hassan, Noor Williams, Eric R. Stefik, Morgan LaManna, Jacob M. Hussey, Daniel S. Mustain, William E. |
author_facet | Zheng, Yiwei Irizarry Colón, Lyzmarie Nicole Ul Hassan, Noor Williams, Eric R. Stefik, Morgan LaManna, Jacob M. Hussey, Daniel S. Mustain, William E. |
author_sort | Zheng, Yiwei |
collection | PubMed |
description | Anion exchange membrane fuel cells (AEMFC) are potentially very low-cost replacements for proton exchange membrane fuel cells. However, AEMFCs suffer from one very serious drawback: significant performance loss when CO(2) is present in the reacting oxidant gas (e.g., air) due to carbonation. Although the chemical mechanisms for how carbonation leads to voltage loss in operating AEMFCs are known, the way those mechanisms are affected by the properties of the anion exchange membrane (AEM) has not been elucidated. Therefore, this work studies AEMFC carbonation using numerous high-functioning AEMs from the literature and it was found that the ionic conductivity of the AEM plays the most critical role in the CO(2)-related voltage loss from carbonation, with the degree of AEM crystallinity playing a minor role. In short, higher conductivity—resulting either from a reduction in the membrane thickness or a change in the polymer chemistry—results in faster CO(2) migration and emission from the anode side. Although this does lead to a lower overall degree of carbonation in the polymer, it also increases CO(2)-related voltage loss. Additionally, an operando neutron imaging cell is used to show that as AEMFCs become increasingly carbonated their water content is reduced, which further drives down cell performance. |
format | Online Article Text |
id | pubmed-7912077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79120772021-02-28 Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells Zheng, Yiwei Irizarry Colón, Lyzmarie Nicole Ul Hassan, Noor Williams, Eric R. Stefik, Morgan LaManna, Jacob M. Hussey, Daniel S. Mustain, William E. Membranes (Basel) Article Anion exchange membrane fuel cells (AEMFC) are potentially very low-cost replacements for proton exchange membrane fuel cells. However, AEMFCs suffer from one very serious drawback: significant performance loss when CO(2) is present in the reacting oxidant gas (e.g., air) due to carbonation. Although the chemical mechanisms for how carbonation leads to voltage loss in operating AEMFCs are known, the way those mechanisms are affected by the properties of the anion exchange membrane (AEM) has not been elucidated. Therefore, this work studies AEMFC carbonation using numerous high-functioning AEMs from the literature and it was found that the ionic conductivity of the AEM plays the most critical role in the CO(2)-related voltage loss from carbonation, with the degree of AEM crystallinity playing a minor role. In short, higher conductivity—resulting either from a reduction in the membrane thickness or a change in the polymer chemistry—results in faster CO(2) migration and emission from the anode side. Although this does lead to a lower overall degree of carbonation in the polymer, it also increases CO(2)-related voltage loss. Additionally, an operando neutron imaging cell is used to show that as AEMFCs become increasingly carbonated their water content is reduced, which further drives down cell performance. MDPI 2021-01-31 /pmc/articles/PMC7912077/ /pubmed/33572590 http://dx.doi.org/10.3390/membranes11020102 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zheng, Yiwei Irizarry Colón, Lyzmarie Nicole Ul Hassan, Noor Williams, Eric R. Stefik, Morgan LaManna, Jacob M. Hussey, Daniel S. Mustain, William E. Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells |
title | Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells |
title_full | Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells |
title_fullStr | Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells |
title_full_unstemmed | Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells |
title_short | Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells |
title_sort | effect of membrane properties on the carbonation of anion exchange membrane fuel cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912077/ https://www.ncbi.nlm.nih.gov/pubmed/33572590 http://dx.doi.org/10.3390/membranes11020102 |
work_keys_str_mv | AT zhengyiwei effectofmembranepropertiesonthecarbonationofanionexchangemembranefuelcells AT irizarrycolonlyzmarienicole effectofmembranepropertiesonthecarbonationofanionexchangemembranefuelcells AT ulhassannoor effectofmembranepropertiesonthecarbonationofanionexchangemembranefuelcells AT williamsericr effectofmembranepropertiesonthecarbonationofanionexchangemembranefuelcells AT stefikmorgan effectofmembranepropertiesonthecarbonationofanionexchangemembranefuelcells AT lamannajacobm effectofmembranepropertiesonthecarbonationofanionexchangemembranefuelcells AT husseydaniels effectofmembranepropertiesonthecarbonationofanionexchangemembranefuelcells AT mustainwilliame effectofmembranepropertiesonthecarbonationofanionexchangemembranefuelcells |