Cargando…

Metabolic Predictors of Equine Performance in Endurance Racing

Equine performance in endurance racing depends on the interplay between physiological and metabolic processes. However, there is currently no parameter for estimating the readiness of animals for competition. Our objectives were to provide an in-depth characterization of metabolic consequences of en...

Descripción completa

Detalles Bibliográficos
Autores principales: Halama, Anna, Oliveira, Joao M., Filho, Silvio A., Qasim, Muhammad, Achkar, Iman W., Johnson, Sarah, Suhre, Karsten, Vinardell, Tatiana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912089/
https://www.ncbi.nlm.nih.gov/pubmed/33572513
http://dx.doi.org/10.3390/metabo11020082
Descripción
Sumario:Equine performance in endurance racing depends on the interplay between physiological and metabolic processes. However, there is currently no parameter for estimating the readiness of animals for competition. Our objectives were to provide an in-depth characterization of metabolic consequences of endurance racing and to establish a metabolic performance profile for those animals. We monitored metabolite composition, using a broad non-targeted metabolomics approach, in blood plasma samples from 47 Arabian horses participating in endurance races. The samples were collected before and after the competition and a total of 792 metabolites were measured. We found significant alterations between before and after the race in 417 molecules involved in lipids and amino acid metabolism. Further, even before the race starts, we found metabolic differences between animals who completed the race and those who did not. We identified a set of six metabolite predictors (imidazole propionate, pipecolate, ethylmalonate, 2R-3R-dihydroxybutyrate, β-hydroxy-isovalerate and X-25455) of animal performance in endurance competition; the resulting model had an area under a receiver operating characteristic (AUC) of 0.92 (95% CI: 0.85–0.98). This study provides an in-depth characterization of metabolic alterations driven by endurance races in equines. Furthermore, we showed the feasibility of identifying potential metabolic signatures as predictors of animal performance in endurance competition.