Cargando…
Increase in Axial Compressibility in a Spinning Van der Waals Gas
We investigated the adiabatic compression along the axial direction of a spinning Van der Waals gas by applying theoretical analysis and molecular dynamics (MD) simulations. Based on the analytical results, the rotation-induced compressibility increase effect is significant in a Van der Waals gas, w...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912195/ https://www.ncbi.nlm.nih.gov/pubmed/33499279 http://dx.doi.org/10.3390/e23020137 |
Sumario: | We investigated the adiabatic compression along the axial direction of a spinning Van der Waals gas by applying theoretical analysis and molecular dynamics (MD) simulations. Based on the analytical results, the rotation-induced compressibility increase effect is significant in a Van der Waals gas, while the attraction term in the Van der Waals equation of states (EOS) contributes significantly to the compressibility increase in a spinning system. We conducted MD simulations to the axial compression of a spinning gas, whose state is far from the ideal gas state, and further demonstrated that the rotation-induced compressibility increase effect in a dense state is robust, implying that such a phenomenon can be detected in experiments under high-energy-density conditions. |
---|