Cargando…
Novel Nano-Filled Coatings for the Protection of Built Heritage Stone Surfaces
An experimental nano-filled coating, based on a fluorine resin containing SiO(2) nano-particles, was applied on calcareous stones, representative of materials used in buildings and monuments of the Mediterranean basin; for comparison purposes, two commercial products were applied on the same substra...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912206/ https://www.ncbi.nlm.nih.gov/pubmed/33503902 http://dx.doi.org/10.3390/nano11020301 |
_version_ | 1783656522902929408 |
---|---|
author | Lettieri, Mariateresa Masieri, Maurizio Frigione, Mariaenrica |
author_facet | Lettieri, Mariateresa Masieri, Maurizio Frigione, Mariaenrica |
author_sort | Lettieri, Mariateresa |
collection | PubMed |
description | An experimental nano-filled coating, based on a fluorine resin containing SiO(2) nano-particles, was applied on calcareous stones, representative of materials used in buildings and monuments of the Mediterranean basin; for comparison purposes, two commercial products were applied on the same substrates. The efficacy of the protective treatments was assessed by analyzing different characteristics of the three experimental/commercial products, i.e., color changes and permeability to water vapor to evaluate the treatments’ harmlessness; capillary water absorption and water stone contact angle to evaluate the protection against water ingress; oleophobicity of the treated surfaces and the behavior under staining by acrylic blue-colored spray paint and felt-tip marker to verify the anti-graffiti action. Finally, the properties of the treated stone surfaces were analyzed also after the application of pancreatin, used to simulate bird excreta (guano). The protective coatings were found to promote graffiti removal, reducing also the detrimental effects due to simulated guano. The experimental nano-filled product, in addition, was able to provide outstanding performance but using smaller amounts of product in comparison to commercial systems. |
format | Online Article Text |
id | pubmed-7912206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79122062021-02-28 Novel Nano-Filled Coatings for the Protection of Built Heritage Stone Surfaces Lettieri, Mariateresa Masieri, Maurizio Frigione, Mariaenrica Nanomaterials (Basel) Article An experimental nano-filled coating, based on a fluorine resin containing SiO(2) nano-particles, was applied on calcareous stones, representative of materials used in buildings and monuments of the Mediterranean basin; for comparison purposes, two commercial products were applied on the same substrates. The efficacy of the protective treatments was assessed by analyzing different characteristics of the three experimental/commercial products, i.e., color changes and permeability to water vapor to evaluate the treatments’ harmlessness; capillary water absorption and water stone contact angle to evaluate the protection against water ingress; oleophobicity of the treated surfaces and the behavior under staining by acrylic blue-colored spray paint and felt-tip marker to verify the anti-graffiti action. Finally, the properties of the treated stone surfaces were analyzed also after the application of pancreatin, used to simulate bird excreta (guano). The protective coatings were found to promote graffiti removal, reducing also the detrimental effects due to simulated guano. The experimental nano-filled product, in addition, was able to provide outstanding performance but using smaller amounts of product in comparison to commercial systems. MDPI 2021-01-25 /pmc/articles/PMC7912206/ /pubmed/33503902 http://dx.doi.org/10.3390/nano11020301 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lettieri, Mariateresa Masieri, Maurizio Frigione, Mariaenrica Novel Nano-Filled Coatings for the Protection of Built Heritage Stone Surfaces |
title | Novel Nano-Filled Coatings for the Protection of Built Heritage Stone Surfaces |
title_full | Novel Nano-Filled Coatings for the Protection of Built Heritage Stone Surfaces |
title_fullStr | Novel Nano-Filled Coatings for the Protection of Built Heritage Stone Surfaces |
title_full_unstemmed | Novel Nano-Filled Coatings for the Protection of Built Heritage Stone Surfaces |
title_short | Novel Nano-Filled Coatings for the Protection of Built Heritage Stone Surfaces |
title_sort | novel nano-filled coatings for the protection of built heritage stone surfaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912206/ https://www.ncbi.nlm.nih.gov/pubmed/33503902 http://dx.doi.org/10.3390/nano11020301 |
work_keys_str_mv | AT lettierimariateresa novelnanofilledcoatingsfortheprotectionofbuiltheritagestonesurfaces AT masierimaurizio novelnanofilledcoatingsfortheprotectionofbuiltheritagestonesurfaces AT frigionemariaenrica novelnanofilledcoatingsfortheprotectionofbuiltheritagestonesurfaces |