Cargando…
Structural Recognition of Triple-Stranded DNA by Surface-Enhanced Raman Spectroscopy
Direct, label-free analysis of nucleic acids via surface-enhanced Raman spectroscopy (SERS) has been continuously expanding its range of applications as an intriguing and powerful analytical tool for the structural characterization of diverse DNA structures. Still, interrogation of nucleic acid tert...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912272/ https://www.ncbi.nlm.nih.gov/pubmed/33513847 http://dx.doi.org/10.3390/nano11020326 |
_version_ | 1783656538573897728 |
---|---|
author | Guerrini, Luca Alvarez-Puebla, Ramon A. |
author_facet | Guerrini, Luca Alvarez-Puebla, Ramon A. |
author_sort | Guerrini, Luca |
collection | PubMed |
description | Direct, label-free analysis of nucleic acids via surface-enhanced Raman spectroscopy (SERS) has been continuously expanding its range of applications as an intriguing and powerful analytical tool for the structural characterization of diverse DNA structures. Still, interrogation of nucleic acid tertiary structures beyond the canonical double helix often remains challenging. In this work, we report for the first time the structural identification of DNA triplex structures. This class of nucleic acids has been attracting great interest because of their intriguing biological functions and pharmacological potential in gene therapy, and the ability for precisely engineering DNA-based functional nanomaterials. Herein, structural discrimination of the triplex structure against its duplex and tertiary strand counterparts is univocally revealed by recognizing key markers bands in the intrinsic SERS fingerprint. These vibrational features are informative of the base stacking, Hoogsteen hydrogen bonding and sugar–phosphate backbone reorganization associated with the triple helix formation. This work expands the applicability of direct SERS to nucleic acids analysis, with potential impact on fields such as sensing, biology and drug design. |
format | Online Article Text |
id | pubmed-7912272 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79122722021-02-28 Structural Recognition of Triple-Stranded DNA by Surface-Enhanced Raman Spectroscopy Guerrini, Luca Alvarez-Puebla, Ramon A. Nanomaterials (Basel) Article Direct, label-free analysis of nucleic acids via surface-enhanced Raman spectroscopy (SERS) has been continuously expanding its range of applications as an intriguing and powerful analytical tool for the structural characterization of diverse DNA structures. Still, interrogation of nucleic acid tertiary structures beyond the canonical double helix often remains challenging. In this work, we report for the first time the structural identification of DNA triplex structures. This class of nucleic acids has been attracting great interest because of their intriguing biological functions and pharmacological potential in gene therapy, and the ability for precisely engineering DNA-based functional nanomaterials. Herein, structural discrimination of the triplex structure against its duplex and tertiary strand counterparts is univocally revealed by recognizing key markers bands in the intrinsic SERS fingerprint. These vibrational features are informative of the base stacking, Hoogsteen hydrogen bonding and sugar–phosphate backbone reorganization associated with the triple helix formation. This work expands the applicability of direct SERS to nucleic acids analysis, with potential impact on fields such as sensing, biology and drug design. MDPI 2021-01-27 /pmc/articles/PMC7912272/ /pubmed/33513847 http://dx.doi.org/10.3390/nano11020326 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guerrini, Luca Alvarez-Puebla, Ramon A. Structural Recognition of Triple-Stranded DNA by Surface-Enhanced Raman Spectroscopy |
title | Structural Recognition of Triple-Stranded DNA by Surface-Enhanced Raman Spectroscopy |
title_full | Structural Recognition of Triple-Stranded DNA by Surface-Enhanced Raman Spectroscopy |
title_fullStr | Structural Recognition of Triple-Stranded DNA by Surface-Enhanced Raman Spectroscopy |
title_full_unstemmed | Structural Recognition of Triple-Stranded DNA by Surface-Enhanced Raman Spectroscopy |
title_short | Structural Recognition of Triple-Stranded DNA by Surface-Enhanced Raman Spectroscopy |
title_sort | structural recognition of triple-stranded dna by surface-enhanced raman spectroscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912272/ https://www.ncbi.nlm.nih.gov/pubmed/33513847 http://dx.doi.org/10.3390/nano11020326 |
work_keys_str_mv | AT guerriniluca structuralrecognitionoftriplestrandeddnabysurfaceenhancedramanspectroscopy AT alvarezpueblaramona structuralrecognitionoftriplestrandeddnabysurfaceenhancedramanspectroscopy |