Cargando…

Distal Symmetric Polyneuropathy Identification in Type 2 Diabetes Subjects: A Random Forest Approach

The prevalence of diabetes mellitus is increasing worldwide, causing health and economic implications. One of the principal microvascular complications of type 2 diabetes is Distal Symmetric Polyneuropathy (DSPN), affecting 42.6% of the population in Mexico. Therefore, the purpose of this study was...

Descripción completa

Detalles Bibliográficos
Autores principales: Maeda-Gutiérrez, Valeria, Galván-Tejada, Carlos E., Cruz, Miguel, Valladares-Salgado, Adan, Galván-Tejada, Jorge I., Gamboa-Rosales, Hamurabi, García-Hernández, Alejandra, Luna-García, Huizilopoztli, Gonzalez-Curiel, Irma, Martínez-Acuña, Mónica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912731/
https://www.ncbi.nlm.nih.gov/pubmed/33535510
http://dx.doi.org/10.3390/healthcare9020138
_version_ 1783656643272114176
author Maeda-Gutiérrez, Valeria
Galván-Tejada, Carlos E.
Cruz, Miguel
Valladares-Salgado, Adan
Galván-Tejada, Jorge I.
Gamboa-Rosales, Hamurabi
García-Hernández, Alejandra
Luna-García, Huizilopoztli
Gonzalez-Curiel, Irma
Martínez-Acuña, Mónica
author_facet Maeda-Gutiérrez, Valeria
Galván-Tejada, Carlos E.
Cruz, Miguel
Valladares-Salgado, Adan
Galván-Tejada, Jorge I.
Gamboa-Rosales, Hamurabi
García-Hernández, Alejandra
Luna-García, Huizilopoztli
Gonzalez-Curiel, Irma
Martínez-Acuña, Mónica
author_sort Maeda-Gutiérrez, Valeria
collection PubMed
description The prevalence of diabetes mellitus is increasing worldwide, causing health and economic implications. One of the principal microvascular complications of type 2 diabetes is Distal Symmetric Polyneuropathy (DSPN), affecting 42.6% of the population in Mexico. Therefore, the purpose of this study was to find out the predictors of this complication. The dataset contained a total number of 140 subjects, including clinical and paraclinical features. A multivariate analysis was constructed using Boruta as a feature selection method and Random Forest as a classification algorithm applying the strategy of K-Folds Cross Validation and Leave One Out Cross Validation. Then, the models were evaluated through a statistical analysis based on sensitivity, specificity, area under the curve (AUC) and receiving operating characteristic (ROC) curve. The results present significant values obtained by the model with this approach, presenting 67% of AUC with only three features as predictors. It is possible to conclude that this proposed methodology can classify patients with DSPN, obtaining a preliminary computer-aided diagnosis tool for the clinical area in helping to identify the diagnosis of DSPN.
format Online
Article
Text
id pubmed-7912731
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79127312021-02-28 Distal Symmetric Polyneuropathy Identification in Type 2 Diabetes Subjects: A Random Forest Approach Maeda-Gutiérrez, Valeria Galván-Tejada, Carlos E. Cruz, Miguel Valladares-Salgado, Adan Galván-Tejada, Jorge I. Gamboa-Rosales, Hamurabi García-Hernández, Alejandra Luna-García, Huizilopoztli Gonzalez-Curiel, Irma Martínez-Acuña, Mónica Healthcare (Basel) Article The prevalence of diabetes mellitus is increasing worldwide, causing health and economic implications. One of the principal microvascular complications of type 2 diabetes is Distal Symmetric Polyneuropathy (DSPN), affecting 42.6% of the population in Mexico. Therefore, the purpose of this study was to find out the predictors of this complication. The dataset contained a total number of 140 subjects, including clinical and paraclinical features. A multivariate analysis was constructed using Boruta as a feature selection method and Random Forest as a classification algorithm applying the strategy of K-Folds Cross Validation and Leave One Out Cross Validation. Then, the models were evaluated through a statistical analysis based on sensitivity, specificity, area under the curve (AUC) and receiving operating characteristic (ROC) curve. The results present significant values obtained by the model with this approach, presenting 67% of AUC with only three features as predictors. It is possible to conclude that this proposed methodology can classify patients with DSPN, obtaining a preliminary computer-aided diagnosis tool for the clinical area in helping to identify the diagnosis of DSPN. MDPI 2021-02-01 /pmc/articles/PMC7912731/ /pubmed/33535510 http://dx.doi.org/10.3390/healthcare9020138 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Maeda-Gutiérrez, Valeria
Galván-Tejada, Carlos E.
Cruz, Miguel
Valladares-Salgado, Adan
Galván-Tejada, Jorge I.
Gamboa-Rosales, Hamurabi
García-Hernández, Alejandra
Luna-García, Huizilopoztli
Gonzalez-Curiel, Irma
Martínez-Acuña, Mónica
Distal Symmetric Polyneuropathy Identification in Type 2 Diabetes Subjects: A Random Forest Approach
title Distal Symmetric Polyneuropathy Identification in Type 2 Diabetes Subjects: A Random Forest Approach
title_full Distal Symmetric Polyneuropathy Identification in Type 2 Diabetes Subjects: A Random Forest Approach
title_fullStr Distal Symmetric Polyneuropathy Identification in Type 2 Diabetes Subjects: A Random Forest Approach
title_full_unstemmed Distal Symmetric Polyneuropathy Identification in Type 2 Diabetes Subjects: A Random Forest Approach
title_short Distal Symmetric Polyneuropathy Identification in Type 2 Diabetes Subjects: A Random Forest Approach
title_sort distal symmetric polyneuropathy identification in type 2 diabetes subjects: a random forest approach
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912731/
https://www.ncbi.nlm.nih.gov/pubmed/33535510
http://dx.doi.org/10.3390/healthcare9020138
work_keys_str_mv AT maedagutierrezvaleria distalsymmetricpolyneuropathyidentificationintype2diabetessubjectsarandomforestapproach
AT galvantejadacarlose distalsymmetricpolyneuropathyidentificationintype2diabetessubjectsarandomforestapproach
AT cruzmiguel distalsymmetricpolyneuropathyidentificationintype2diabetessubjectsarandomforestapproach
AT valladaressalgadoadan distalsymmetricpolyneuropathyidentificationintype2diabetessubjectsarandomforestapproach
AT galvantejadajorgei distalsymmetricpolyneuropathyidentificationintype2diabetessubjectsarandomforestapproach
AT gamboarosaleshamurabi distalsymmetricpolyneuropathyidentificationintype2diabetessubjectsarandomforestapproach
AT garciahernandezalejandra distalsymmetricpolyneuropathyidentificationintype2diabetessubjectsarandomforestapproach
AT lunagarciahuizilopoztli distalsymmetricpolyneuropathyidentificationintype2diabetessubjectsarandomforestapproach
AT gonzalezcurielirma distalsymmetricpolyneuropathyidentificationintype2diabetessubjectsarandomforestapproach
AT martinezacunamonica distalsymmetricpolyneuropathyidentificationintype2diabetessubjectsarandomforestapproach