Cargando…
Synthesis of MnO/C/NiO-Doped Porous Multiphasic Composites for Lithium-Ion Batteries by Biomineralized Mn Oxides from Engineered Pseudomonas putida Cells
A biotemplated cation-incoporating method based on bacterial cell-surface display technology and biogenic Mn oxide mineralization process was developed to fabricate Mn-based multiphasic composites as anodes for Li-ion batteries. The engineered Pseudomonas putida MB285 cells with surface-immobilized...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912735/ https://www.ncbi.nlm.nih.gov/pubmed/33535572 http://dx.doi.org/10.3390/nano11020361 |
Sumario: | A biotemplated cation-incoporating method based on bacterial cell-surface display technology and biogenic Mn oxide mineralization process was developed to fabricate Mn-based multiphasic composites as anodes for Li-ion batteries. The engineered Pseudomonas putida MB285 cells with surface-immobilized multicopper oxidase serve as nucleation centers in the Mn oxide biomineralization process, and the Mn oxides act as a settler for incorporating Ni ions to form aggregates in this process. The assays using X-ray photoelectron spectroscopy, phase compositions, and fine structures verified that the resulting material MnO/C/NiO (CMB-Ni) was porous multiphasic composites with spherical and porous nanostructures. The electrochemical properties of materials were improved in the presence of NiO. The reversible discharge capacity of CMB-Ni remained at 352.92 mAh g(−1) after 200 cycles at 0.1 A g(−1) current density. In particular, the coulombic efficiency was approximately 100% after the second cycle for CMB-Ni. |
---|