Cargando…
3D Printing of PDMS-Like Polymer Nanocomposites with Enhanced Thermal Conductivity: Boron Nitride Based Photocuring System
This study demonstrates the possibility of forming 3D structures with enhanced thermal conductivity (k) by vat printing a silicone–acrylate based nanocomposite. Polydimethylsiloxane (PDSM) represent a common silicone-based polymer used in several applications from electronics to microfluidics. Unfor...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912901/ https://www.ncbi.nlm.nih.gov/pubmed/33540598 http://dx.doi.org/10.3390/nano11020373 |
_version_ | 1783656682375610368 |
---|---|
author | Pezzana, Lorenzo Riccucci, Giacomo Spriano, Silvia Battegazzore, Daniele Sangermano, Marco Chiappone, Annalisa |
author_facet | Pezzana, Lorenzo Riccucci, Giacomo Spriano, Silvia Battegazzore, Daniele Sangermano, Marco Chiappone, Annalisa |
author_sort | Pezzana, Lorenzo |
collection | PubMed |
description | This study demonstrates the possibility of forming 3D structures with enhanced thermal conductivity (k) by vat printing a silicone–acrylate based nanocomposite. Polydimethylsiloxane (PDSM) represent a common silicone-based polymer used in several applications from electronics to microfluidics. Unfortunately, the k value of the polymer is low, so a composite is required to be formed in order to increase its thermal conductivity. Several types of fillers are available to reach this result. In this study, boron nitride (BN) nanoparticles were used to increase the thermal conductivity of a PDMS-like photocurable matrix. A digital light processing (DLP) system was employed to form complex structures. The viscosity of the formulation was firstly investigated; photorheology and attenuate total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) analyses were done to check the reactivity of the system that resulted as suitable for DLP printing. Mechanical and thermal analyses were performed on printed samples through dynamic mechanical thermal analysis (DMTA) and tensile tests, revealing a positive effect of the BN nanoparticles. Morphological characterization was performed by scanning electron microscopy (SEM). Finally, thermal analysis demonstrated that the thermal conductivity of the material was improved, maintaining the possibility of producing 3D printable formulations. |
format | Online Article Text |
id | pubmed-7912901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79129012021-02-28 3D Printing of PDMS-Like Polymer Nanocomposites with Enhanced Thermal Conductivity: Boron Nitride Based Photocuring System Pezzana, Lorenzo Riccucci, Giacomo Spriano, Silvia Battegazzore, Daniele Sangermano, Marco Chiappone, Annalisa Nanomaterials (Basel) Article This study demonstrates the possibility of forming 3D structures with enhanced thermal conductivity (k) by vat printing a silicone–acrylate based nanocomposite. Polydimethylsiloxane (PDSM) represent a common silicone-based polymer used in several applications from electronics to microfluidics. Unfortunately, the k value of the polymer is low, so a composite is required to be formed in order to increase its thermal conductivity. Several types of fillers are available to reach this result. In this study, boron nitride (BN) nanoparticles were used to increase the thermal conductivity of a PDMS-like photocurable matrix. A digital light processing (DLP) system was employed to form complex structures. The viscosity of the formulation was firstly investigated; photorheology and attenuate total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) analyses were done to check the reactivity of the system that resulted as suitable for DLP printing. Mechanical and thermal analyses were performed on printed samples through dynamic mechanical thermal analysis (DMTA) and tensile tests, revealing a positive effect of the BN nanoparticles. Morphological characterization was performed by scanning electron microscopy (SEM). Finally, thermal analysis demonstrated that the thermal conductivity of the material was improved, maintaining the possibility of producing 3D printable formulations. MDPI 2021-02-02 /pmc/articles/PMC7912901/ /pubmed/33540598 http://dx.doi.org/10.3390/nano11020373 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pezzana, Lorenzo Riccucci, Giacomo Spriano, Silvia Battegazzore, Daniele Sangermano, Marco Chiappone, Annalisa 3D Printing of PDMS-Like Polymer Nanocomposites with Enhanced Thermal Conductivity: Boron Nitride Based Photocuring System |
title | 3D Printing of PDMS-Like Polymer Nanocomposites with Enhanced Thermal Conductivity: Boron Nitride Based Photocuring System |
title_full | 3D Printing of PDMS-Like Polymer Nanocomposites with Enhanced Thermal Conductivity: Boron Nitride Based Photocuring System |
title_fullStr | 3D Printing of PDMS-Like Polymer Nanocomposites with Enhanced Thermal Conductivity: Boron Nitride Based Photocuring System |
title_full_unstemmed | 3D Printing of PDMS-Like Polymer Nanocomposites with Enhanced Thermal Conductivity: Boron Nitride Based Photocuring System |
title_short | 3D Printing of PDMS-Like Polymer Nanocomposites with Enhanced Thermal Conductivity: Boron Nitride Based Photocuring System |
title_sort | 3d printing of pdms-like polymer nanocomposites with enhanced thermal conductivity: boron nitride based photocuring system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912901/ https://www.ncbi.nlm.nih.gov/pubmed/33540598 http://dx.doi.org/10.3390/nano11020373 |
work_keys_str_mv | AT pezzanalorenzo 3dprintingofpdmslikepolymernanocompositeswithenhancedthermalconductivityboronnitridebasedphotocuringsystem AT riccuccigiacomo 3dprintingofpdmslikepolymernanocompositeswithenhancedthermalconductivityboronnitridebasedphotocuringsystem AT sprianosilvia 3dprintingofpdmslikepolymernanocompositeswithenhancedthermalconductivityboronnitridebasedphotocuringsystem AT battegazzoredaniele 3dprintingofpdmslikepolymernanocompositeswithenhancedthermalconductivityboronnitridebasedphotocuringsystem AT sangermanomarco 3dprintingofpdmslikepolymernanocompositeswithenhancedthermalconductivityboronnitridebasedphotocuringsystem AT chiapponeannalisa 3dprintingofpdmslikepolymernanocompositeswithenhancedthermalconductivityboronnitridebasedphotocuringsystem |