Cargando…

Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development

SIMPLE SUMMARY: Intergenerational and transgenerational effects, in which exposure to stressors in a parental generation affects the phenotype of the offspring have been connected to anthropic impacts on biological systems. Therefore, environmental stress experienced inside a generation, particularl...

Descripción completa

Detalles Bibliográficos
Autores principales: Masullo, Tiziana, Biondo, Girolama, Natale, Marilena Di, Tagliavia, Marcello, Bennici, Carmelo Daniele, Musco, Marianna, Ragusa, Maria Antonietta, Costa, Salvatore, Cuttitta, Angela, Nicosia, Aldo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912929/
https://www.ncbi.nlm.nih.gov/pubmed/33535713
http://dx.doi.org/10.3390/biology10020103
_version_ 1783656688283287552
author Masullo, Tiziana
Biondo, Girolama
Natale, Marilena Di
Tagliavia, Marcello
Bennici, Carmelo Daniele
Musco, Marianna
Ragusa, Maria Antonietta
Costa, Salvatore
Cuttitta, Angela
Nicosia, Aldo
author_facet Masullo, Tiziana
Biondo, Girolama
Natale, Marilena Di
Tagliavia, Marcello
Bennici, Carmelo Daniele
Musco, Marianna
Ragusa, Maria Antonietta
Costa, Salvatore
Cuttitta, Angela
Nicosia, Aldo
author_sort Masullo, Tiziana
collection PubMed
description SIMPLE SUMMARY: Intergenerational and transgenerational effects, in which exposure to stressors in a parental generation affects the phenotype of the offspring have been connected to anthropic impacts on biological systems. Therefore, environmental stress experienced inside a generation, particularly during gametogenesis, may lead to erroneous patterns in their offspring just emerging at early developmental stages. In this scenario, the sea urchin embryo represents a suitable model for integrating analyses of gene expression through embryogenesis with developmental alteration induced by environmental stressors. Herein we provide pieces of evidence for the alteration of the gene regulatory networks modulating embryo development after parental conditioning via non-lethal metal exposure. We show that the parentals’ conditioning does not affect viability but significantly impairs the developmental fate of the progeny and regulatory network across a generation. It is reasonable to suppose that changes in Paracentrotus lividus gonads may modify the expression of regulatory genes modulating synthesis and/or accumulation of maternal determinants, which, in turn, impaired the zygotic activation of GRNs responsible for proper embryo development. ABSTRACT: It is widely accepted that phenotypic traits can be modulated at the epigenetic level so that some conditions can affect the progeny of exposed individuals. To assess if the exposure of adult animals could result in effects on the offspring, the Mediterranean sea urchin and its well-characterized gene regulatory networks (GRNs) was chosen as a model. Adult animals were exposed to known concentrations of zinc and cadmium (both individually and in combination) for 10 days, and the resulting embryos were followed during the development. The oxidative stress occurring in parental gonads, embryo phenotypes and mortality, and the expression level of a set of selected genes, including members of the skeletogenic and endodermal GRNs, were evaluated. Increased oxidative stress at F(0), high rates of developmental aberration with impaired gastrulation, in association to deregulation of genes involved in skeletogenesis (dri, hex, sm50, p16, p19, msp130), endodermal specification (foxa, hox11/13b, wnt8) and epigenetic regulation (kat2A, hdac1, ehmt2, phf8 and UBE2a) occurred either at 24 or 48 hpf. Results strongly indicate that exposure to environmental pollutants can affect not only directly challenged animals but also their progeny (at least F(1)), influencing optimal timing of genetic programme of embryo development, resulting in an overall impairment of developmental success.
format Online
Article
Text
id pubmed-7912929
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79129292021-02-28 Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development Masullo, Tiziana Biondo, Girolama Natale, Marilena Di Tagliavia, Marcello Bennici, Carmelo Daniele Musco, Marianna Ragusa, Maria Antonietta Costa, Salvatore Cuttitta, Angela Nicosia, Aldo Biology (Basel) Article SIMPLE SUMMARY: Intergenerational and transgenerational effects, in which exposure to stressors in a parental generation affects the phenotype of the offspring have been connected to anthropic impacts on biological systems. Therefore, environmental stress experienced inside a generation, particularly during gametogenesis, may lead to erroneous patterns in their offspring just emerging at early developmental stages. In this scenario, the sea urchin embryo represents a suitable model for integrating analyses of gene expression through embryogenesis with developmental alteration induced by environmental stressors. Herein we provide pieces of evidence for the alteration of the gene regulatory networks modulating embryo development after parental conditioning via non-lethal metal exposure. We show that the parentals’ conditioning does not affect viability but significantly impairs the developmental fate of the progeny and regulatory network across a generation. It is reasonable to suppose that changes in Paracentrotus lividus gonads may modify the expression of regulatory genes modulating synthesis and/or accumulation of maternal determinants, which, in turn, impaired the zygotic activation of GRNs responsible for proper embryo development. ABSTRACT: It is widely accepted that phenotypic traits can be modulated at the epigenetic level so that some conditions can affect the progeny of exposed individuals. To assess if the exposure of adult animals could result in effects on the offspring, the Mediterranean sea urchin and its well-characterized gene regulatory networks (GRNs) was chosen as a model. Adult animals were exposed to known concentrations of zinc and cadmium (both individually and in combination) for 10 days, and the resulting embryos were followed during the development. The oxidative stress occurring in parental gonads, embryo phenotypes and mortality, and the expression level of a set of selected genes, including members of the skeletogenic and endodermal GRNs, were evaluated. Increased oxidative stress at F(0), high rates of developmental aberration with impaired gastrulation, in association to deregulation of genes involved in skeletogenesis (dri, hex, sm50, p16, p19, msp130), endodermal specification (foxa, hox11/13b, wnt8) and epigenetic regulation (kat2A, hdac1, ehmt2, phf8 and UBE2a) occurred either at 24 or 48 hpf. Results strongly indicate that exposure to environmental pollutants can affect not only directly challenged animals but also their progeny (at least F(1)), influencing optimal timing of genetic programme of embryo development, resulting in an overall impairment of developmental success. MDPI 2021-02-01 /pmc/articles/PMC7912929/ /pubmed/33535713 http://dx.doi.org/10.3390/biology10020103 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Masullo, Tiziana
Biondo, Girolama
Natale, Marilena Di
Tagliavia, Marcello
Bennici, Carmelo Daniele
Musco, Marianna
Ragusa, Maria Antonietta
Costa, Salvatore
Cuttitta, Angela
Nicosia, Aldo
Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development
title Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development
title_full Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development
title_fullStr Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development
title_full_unstemmed Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development
title_short Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development
title_sort gene expression changes after parental exposure to metals in the sea urchin affect timing of genetic programme of embryo development
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912929/
https://www.ncbi.nlm.nih.gov/pubmed/33535713
http://dx.doi.org/10.3390/biology10020103
work_keys_str_mv AT masullotiziana geneexpressionchangesafterparentalexposuretometalsintheseaurchinaffecttimingofgeneticprogrammeofembryodevelopment
AT biondogirolama geneexpressionchangesafterparentalexposuretometalsintheseaurchinaffecttimingofgeneticprogrammeofembryodevelopment
AT natalemarilenadi geneexpressionchangesafterparentalexposuretometalsintheseaurchinaffecttimingofgeneticprogrammeofembryodevelopment
AT tagliaviamarcello geneexpressionchangesafterparentalexposuretometalsintheseaurchinaffecttimingofgeneticprogrammeofembryodevelopment
AT bennicicarmelodaniele geneexpressionchangesafterparentalexposuretometalsintheseaurchinaffecttimingofgeneticprogrammeofembryodevelopment
AT muscomarianna geneexpressionchangesafterparentalexposuretometalsintheseaurchinaffecttimingofgeneticprogrammeofembryodevelopment
AT ragusamariaantonietta geneexpressionchangesafterparentalexposuretometalsintheseaurchinaffecttimingofgeneticprogrammeofembryodevelopment
AT costasalvatore geneexpressionchangesafterparentalexposuretometalsintheseaurchinaffecttimingofgeneticprogrammeofembryodevelopment
AT cuttittaangela geneexpressionchangesafterparentalexposuretometalsintheseaurchinaffecttimingofgeneticprogrammeofembryodevelopment
AT nicosiaaldo geneexpressionchangesafterparentalexposuretometalsintheseaurchinaffecttimingofgeneticprogrammeofembryodevelopment