Cargando…

Effects of Substitution of Corn with Ground Brown Rice on Growth Performance, Nutrient Digestibility, and Gut Microbiota of Growing-Finishing Pigs

SIMPLE SUMMARY: Corn is the main feed ingredient used in swine diets as an energy source due to its abundant production and nutrient contents. In South Korea, most of the corn for animal diets depends on import from other countries—more than 7.5 million tons per year. Thus, there is a need to find a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Sheena, Cho, Jin Ho, Kim, Younghoon, Kim, Hyeun Bum, Song, Minho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913002/
https://www.ncbi.nlm.nih.gov/pubmed/33540816
http://dx.doi.org/10.3390/ani11020375
Descripción
Sumario:SIMPLE SUMMARY: Corn is the main feed ingredient used in swine diets as an energy source due to its abundant production and nutrient contents. In South Korea, most of the corn for animal diets depends on import from other countries—more than 7.5 million tons per year. Thus, there is a need to find alternative ingredients to substitute corn in pig diets. Although there are variations depending on the degree of milling, brown rice has similar or better nutrient contents compared to corn. In addition, it is known to have excellent digestibility due to its smaller starch structure and granule size and less non-starch polysaccharides and anti-nutritional factors than corn. As a result of evaluating the effects of replacing corn with brown rice in pig diets, changes in gut microbiota were observed when corn was replaced with brown rice for a long time, but there were no differences on growth performance and carcass characteristics. Therefore, it has been confirmed that brown rice can replace corn in swine diets and the use of brown rice as a pig feed ingredient may be the basis for increasing feed self-sufficiency and enabling a stable feed supply. ABSTRACT: The present study was conducted to evaluate the effects of replacing corn with brown rice on growth performance, nutrient digestibility, carcass characteristics, and gut microbiota of growing and finishing pigs. A total of 100 growing pigs (23.80 ± 2.96 kg BW; 10 weeks of age) were randomly allotted to 4 dietary treatments (5 pigs/pen; 5 replicates/treatment) in a randomized complete block design (block = BW) as follows: corn-soybean meal basal diet (CON) and replacing corn with 50% (GBR50), 75% (GBR75), and 100% (GBR100) of ground brown rice. Each trial phase was for 6 weeks. During the growing period, there were no differences on growth performance and nutrient digestibility among dietary treatments. Similarly, no differences were found on growth performance, nutrient digestibility, and carcass characteristics of pigs during the finishing period among dietary treatments. As a result of the beta diversity analysis, microbial populations were not clustered between CON and GBR100 during the growing phase, but clustered into two distinct groups of CON and GBR100 during the finishing phase. In conclusion, brown rice can be added to the diets of growing-finishing pigs by replacing corn up to 100% without negatively affecting growth performance of the pigs; additionally, this may have an effect on changes in pig intestinal microbiota if continued for a long time.