Cargando…
A Spatiotemporal-Oriented Deep Ensemble Learning Model to Defend Link Flooding Attacks in IoT Network
(1) Background: Link flooding attacks (LFA) are a spatiotemporal attack pattern of distributed denial-of-service (DDoS) that arranges bots to send low-speed traffic to backbone links and paralyze servers in the target area. (2) Problem: The traditional methods to defend against LFA are heuristic and...
Autores principales: | Chen, Yen-Hung, Lai, Yuan-Cheng, Jan, Pi-Tzong, Tsai, Ting-Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913316/ https://www.ncbi.nlm.nih.gov/pubmed/33546204 http://dx.doi.org/10.3390/s21041027 |
Ejemplares similares
-
Attack-Aware IoT Network Traffic Routing Leveraging Ensemble Learning
por: Abu Al-Haija, Qasem, et al.
Publicado: (2021) -
XRecon: An Explainbale IoT Reconnaissance Attack Detection System Based on Ensemble Learning
por: Alani, Mohammed M., et al.
Publicado: (2023) -
Approach for Detecting Attacks on IoT Networks Based on Ensemble Feature Selection and Deep Learning Models
por: Rihan , Shaza Dawood Ahmed, et al.
Publicado: (2023) -
Attacking IoT with Software defined radio
por: Andersson, Jonathan
Publicado: (2015) -
Defending IoT infrastructures with the Raspberry Pi: monitoring and detecting nefarious behavior in real time
por: Hosmer, Chet
Publicado: (2018)