Cargando…
Cytoprotective Role of Edible Seahorse (Hippocampus abdominalis)-Derived Peptides in H(2)O(2)-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells
Oxidative stress-induced endothelial dysfunction is strongly linked to the pathogenesis of cardiovascular diseases. A previous study revealed that seahorse hydrolysates ameliorated oxidative stress-mediated human umbilical vein endothelial cells (HUVECs) injury. However, the responsible compounds ha...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913330/ https://www.ncbi.nlm.nih.gov/pubmed/33546257 http://dx.doi.org/10.3390/md19020086 |
_version_ | 1783656780222431232 |
---|---|
author | Oh, Yunok Ahn, Chang-Bum Je, Jae-Young |
author_facet | Oh, Yunok Ahn, Chang-Bum Je, Jae-Young |
author_sort | Oh, Yunok |
collection | PubMed |
description | Oxidative stress-induced endothelial dysfunction is strongly linked to the pathogenesis of cardiovascular diseases. A previous study revealed that seahorse hydrolysates ameliorated oxidative stress-mediated human umbilical vein endothelial cells (HUVECs) injury. However, the responsible compounds have not yet been identified. This study aimed to identify cytoprotective peptides and to investigate the molecular mechanism underlying the cytoprotective role in H(2)O(2)-induced HUVECs injury. After purification by gel filtration and HPLC, two peptides were sequenced by liquid chromatography-tandem mass spectrometry as HGSH (436.43 Da) and KGPSW (573.65 Da). The synthesized peptides and their combination (1:1 ratio) showed significant HUVECs protection effect at 100 μg/mL against H(2)O(2)-induced oxidative damage via significantly reducing intracellular reactive oxygen species (ROS). Two peptides and their combination treatment resulted in the increased heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, through the activation of nuclear transcription factor-erythroid 2-related factor (Nrf2). Additionally, cell cycle and nuclear staining analysis revealed that two peptides and their combination significantly protected H(2)O(2)-induced cell death through antiapoptotic action. Two peptides and their combination treatment led to inhibit the expression of proapoptotic Bax, the release of cytochrome C into the cytosol, the activation of caspase 3 by H(2)O(2) treatment in HUVECs, whereas antiapoptotic Bcl-2 expression was increased with concomitant downregulation of Bax/Bcl-2 ratio. Taken together, these results suggest that seahorse-derived peptides may be a promising agent for oxidative stress-related cardiovascular diseases. |
format | Online Article Text |
id | pubmed-7913330 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79133302021-02-28 Cytoprotective Role of Edible Seahorse (Hippocampus abdominalis)-Derived Peptides in H(2)O(2)-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells Oh, Yunok Ahn, Chang-Bum Je, Jae-Young Mar Drugs Article Oxidative stress-induced endothelial dysfunction is strongly linked to the pathogenesis of cardiovascular diseases. A previous study revealed that seahorse hydrolysates ameliorated oxidative stress-mediated human umbilical vein endothelial cells (HUVECs) injury. However, the responsible compounds have not yet been identified. This study aimed to identify cytoprotective peptides and to investigate the molecular mechanism underlying the cytoprotective role in H(2)O(2)-induced HUVECs injury. After purification by gel filtration and HPLC, two peptides were sequenced by liquid chromatography-tandem mass spectrometry as HGSH (436.43 Da) and KGPSW (573.65 Da). The synthesized peptides and their combination (1:1 ratio) showed significant HUVECs protection effect at 100 μg/mL against H(2)O(2)-induced oxidative damage via significantly reducing intracellular reactive oxygen species (ROS). Two peptides and their combination treatment resulted in the increased heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, through the activation of nuclear transcription factor-erythroid 2-related factor (Nrf2). Additionally, cell cycle and nuclear staining analysis revealed that two peptides and their combination significantly protected H(2)O(2)-induced cell death through antiapoptotic action. Two peptides and their combination treatment led to inhibit the expression of proapoptotic Bax, the release of cytochrome C into the cytosol, the activation of caspase 3 by H(2)O(2) treatment in HUVECs, whereas antiapoptotic Bcl-2 expression was increased with concomitant downregulation of Bax/Bcl-2 ratio. Taken together, these results suggest that seahorse-derived peptides may be a promising agent for oxidative stress-related cardiovascular diseases. MDPI 2021-02-03 /pmc/articles/PMC7913330/ /pubmed/33546257 http://dx.doi.org/10.3390/md19020086 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Oh, Yunok Ahn, Chang-Bum Je, Jae-Young Cytoprotective Role of Edible Seahorse (Hippocampus abdominalis)-Derived Peptides in H(2)O(2)-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells |
title | Cytoprotective Role of Edible Seahorse (Hippocampus abdominalis)-Derived Peptides in H(2)O(2)-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells |
title_full | Cytoprotective Role of Edible Seahorse (Hippocampus abdominalis)-Derived Peptides in H(2)O(2)-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells |
title_fullStr | Cytoprotective Role of Edible Seahorse (Hippocampus abdominalis)-Derived Peptides in H(2)O(2)-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells |
title_full_unstemmed | Cytoprotective Role of Edible Seahorse (Hippocampus abdominalis)-Derived Peptides in H(2)O(2)-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells |
title_short | Cytoprotective Role of Edible Seahorse (Hippocampus abdominalis)-Derived Peptides in H(2)O(2)-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells |
title_sort | cytoprotective role of edible seahorse (hippocampus abdominalis)-derived peptides in h(2)o(2)-induced oxidative stress in human umbilical vein endothelial cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7913330/ https://www.ncbi.nlm.nih.gov/pubmed/33546257 http://dx.doi.org/10.3390/md19020086 |
work_keys_str_mv | AT ohyunok cytoprotectiveroleofedibleseahorsehippocampusabdominalisderivedpeptidesinh2o2inducedoxidativestressinhumanumbilicalveinendothelialcells AT ahnchangbum cytoprotectiveroleofedibleseahorsehippocampusabdominalisderivedpeptidesinh2o2inducedoxidativestressinhumanumbilicalveinendothelialcells AT jejaeyoung cytoprotectiveroleofedibleseahorsehippocampusabdominalisderivedpeptidesinh2o2inducedoxidativestressinhumanumbilicalveinendothelialcells |